A210947 Triangle read by rows: T(n,k) = total number of parts <= k of all partitions of n.
1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 12, 16, 18, 19, 20, 19, 27, 31, 33, 34, 35, 30, 41, 47, 50, 52, 53, 54, 45, 64, 73, 79, 82, 84, 85, 86, 67, 93, 108, 116, 121, 124, 126, 127, 128, 97, 138, 159, 172, 180, 185, 188, 190, 191, 192
Offset: 1
Examples
Triangle begins: 1; 2, 3; 4, 5, 6; 7, 10, 11, 12; 12, 16, 18, 19, 20; 19, 27, 31, 33, 34, 35; 30, 41, 47, 50, 52, 53, 54; 45, 64, 73, 79, 82, 84, 85, 86; 67, 93, 108, 116, 121, 124, 126, 127, 128;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0): b:= proc(n, i) option remember; local f, g; if n=0 then [1] elif i=1 then [1, n] else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i)); p (p (f, g), [0$i, g[1]]) fi end: T:= proc(n, k) option remember; b(n, n)[k+1] +`if`(k<2, 0, T(n, k-1)) end: seq (seq (T(n,k), k=1..n), n=1..11); # Alois P. Heinz, May 02 2012
-
Mathematica
p[f_, g_] := With[{m = Max[Length[f], Length[g]]}, PadRight[f, m, 0] + PadRight[g, m, 0]]; b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0, {1}, If[i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0}, b[n-i, i]]; p[p[f, g], Append[Array[0&, i], g[[1]] ]]]]]; T[n_, k_] := T[n, k] = b[n, n][[k+1]] + If[k<2, 0, T[n, k-1]]; Table [Table [T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 11 2015, after Alois P. Heinz *)
Formula
T(n,k) = Sum_{j=1..k} A066633(n,j).
Comments