A338156
Irregular triangle read by rows in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the divisors of (n - m + 1), with 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 3, 6, 1, 5, 1, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 1
Triangle begins:
[1];
[1,2], [1];
[1,3], [1,2], [1], [1];
[1,2,4], [1,3], [1,2], [1,2], [1], [1], [1];
[1,5], [1,2,4], [1,3], [1,3], [1,2], [1,2], [1,2], [1], [1], [1], [1], [1];
...
For n = 5 the 5th row of A176206 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] so replacing every term with its divisors we have the 5th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
[1],
-------
[1, 2],
[1],
-------
[1, 3],
[1, 2],
[1],
[1];
----------
[1, 2, 4],
[1, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------
[1, 5],
[1, 2, 4],
[1, 3],
[1, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and all parts of all partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the partitions of every positive integer in colexicographic order (cf. A026792, A211992).
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
.
|---|---------|-----|-------|---------|------------|---------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|------------|---------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
----|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| | | | | |/| | |/|/| | |/ |/|/| | |/ | /|/|/| |
| L | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| K | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | | | |\| | |\|\| | |\ |\|\| | |\ |\ |\|\| |
| | A206561 | 1 | 4 2 | 9 5 3 | 20 13 7 4 | 35 23 15 9 5 |
|---|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
| |---------|-----|-------|---------|------------|---------------|
| | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| |---------|-----|-------|---------|------------|---------------|
| D | A027750 | | | 1 | 1 2 | 1 3 |
| I | A027750 | | | 1 | 1 2 | 1 3 |
| V |---------|-----|-------|---------|------------|---------------|
| I | A027750 | | | | 1 | 1 2 |
| S | A027750 | | | | 1 | 1 2 |
| O | A027750 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|------------|---------------|
| S | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
|---|---------|-----|-------|---------|------------|---------------|
.
Note that every row in the lower zone lists A027750.
Also the lower zone for every positive integer can be constructed using the first n terms of the partition numbers. For example: for n = 5 we consider the first 5 terms of A000041 (that is [1, 1, 2, 3, 5]) then the 5th slice is formed by a block with the divisors of 5, one block with the divisors of 4, two blocks with the divisors of 3, three blocks with the divisors of 2, and five blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the correspondence between the prism of partitions and its associated tower since the number of parts in all partitions of n is equal to A006128(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts of all partitions of n is equal to A066186(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
The product of row n is
A007870(n).
Row n lists the first n rows of
A336812 (a subsequence).
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A127093,
A135010,
A138121,
A176206,
A182703,
A206437,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A245095,
A221649,
A221650,
A237593,
A302246,
A302247,
A336811,
A337209,
A339106,
A339258,
A339278,
A339304,
A340035,
A340061,
A346741.
-
A338156[rowmax_]:=Table[Flatten[Table[ConstantArray[Divisors[n-m],PartitionsP[m]],{m,0,n-1}]],{n,rowmax}];
A338156[10] (* Generates 10 rows *) (* Paolo Xausa, Jan 12 2023 *)
-
A338156(rowmax)=vector(rowmax,n,concat(vector(n,m,concat(vector(numbpart(m-1),i,divisors(n-m+1))))));
A338156(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023
A302246
Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nonincreasing order.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1
Offset: 1
Triangle begins:
1;
2,1,1;
3,2,1,1,1,1;
4,3,2,2,2,1,1,1,1,1,1,1;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1;
6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There is only one 4, only one 3, three 2's and seven 1's, so the 4th row of this triangle is [4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nonincreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
-
nrows=10;Array[ReverseSort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
-
row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list), , 4); \\ Michel Marcus, Jun 16 2022
A302247
Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nondecreasing order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
1,1,2;
1,1,1,1,2,3;
1,1,1,1,1,1,1,2,2,2,3,4;
1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There are seven 1's, three 2's, only one 3 and only one 4, so the 4th row of this triangle is [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nondecreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
-
nrows=10; Array[Sort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
-
row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list)); \\ Michel Marcus, Jun 16 2022
A346741
Irregular triangle read by rows which is constructed in row n replacing the first A000070(n-1) terms of A336811 with their divisors.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1
Offset: 1
Triangle begins:
[1];
[1],[1, 2];
[1],[1, 2],[1, 3],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1],[1, 5],[1, 3],[1, 2],[1],[1];
...
Below the table shows the correspondence divisor/part.
|---|-----------------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|-----------------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
----|-----------------|-----|-------|---------|-----------|-------------|
.
|---|-----------------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|-----------------|-----|-------|---------|-----------|-------------|
.
. |-------|
. |Section|
|---|-------|---------|-----|-------|---------|-----------|-------------|
| | 1 | A000012 | 1 | 1 | 1 | 1 | 1 |
| |-------|---------|-----|-------|---------|-----------|-------------|
| | 2 | A000034 | | 1 2 | 1 2 | 1 2 | 1 2 |
| |-------|---------|-----|-------|---------|-----------|-------------|
| D | 3 | A010684 | | | 1 3 | 1 3 | 1 3 |
| I | | A000012 | | | 1 | 1 | 1 |
| V |-------|---------|-----|-------|---------|-----------|-------------|
| I | 4 | A069705 | | | | 1 2 4 | 1 2 4 |
| S | | A000034 | | | | 1 2 | 1 2 |
| O | | A000012 | | | | 1 | 1 |
| R |-------|---------|-----|-------|---------|-----------|-------------|
| S | 5 | A010686 | | | | | 1 5 |
| | | A010684 | | | | | 1 3 |
| | | A000034 | | | | | 1 2 |
| | | A000012 | | | | | 1 |
| | | A000012 | | | | | 1 |
|---|-------|---------|-----|-------|---------|-----------|-------------|
.
In the above table both the zone of partitions and the "Link" zone are the same zones as in the table of the example section of A338156, but here in the lower zone the divisors are ordered in accordance with the sections of the set of partitions of n.
The number of rows in the j-th section of the lower zone is equal to A000041(j-1).
The divisors of the j-th section are also the parts of the j-th section of the set of partitions of n.
The product of row n is
A007870(n).
Row n lists the first n rows of
A336812.
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
Cf.
A000012,
A000034,
A000041,
A000070,
A002260,
A010684,
A010686,
A027750,
A066633,
A069705,
A135010,
A138785,
A181187,
A221529,
A221649,
A237593,
A302246,
A302247,
A336811,
A340011,
A340031,
A340032,
A340035,
A340056,
A340057.
A210955
Triangle read by rows: T(n,k) = total number of parts <= k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 3, 5, 5, 6, 5, 6, 7, 7, 8, 7, 11, 13, 14, 14, 15, 11, 14, 16, 17, 18, 18, 19, 15, 23, 26, 29, 30, 31, 31, 32, 22, 29, 35, 37, 39, 40, 41, 41, 42, 30, 45, 51, 56, 59, 61, 62, 63, 63, 64, 42, 57, 67, 72, 76, 78, 80, 81, 82, 82, 83
Offset: 1
1,
1, 2,
2, 2, 3,
3, 5, 5, 6,
5, 6, 7, 7, 8,
7, 11, 13, 14, 14, 15,
11, 14, 16, 17, 18, 18, 19,
15, 23, 26, 29, 30, 31, 31, 32,
22, 29, 35, 37, 39, 40, 41, 41, 42;
Cf.
A135010,
A138121,
A182703,
A206437,
A206562,
A207031,
A207032,
A207383,
A208476,
A210947,
A210956.
Showing 1-5 of 5 results.
Comments