cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A162630 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.

Original entry on oeis.org

2, 4, 2, 6, 2, 4, 8, 4, 2, 6, 10, 6, 2, 4, 8, 12, 8, 4, 2, 6, 10, 14, 10, 6, 2, 4, 8, 12, 16, 12, 8, 4, 2, 6, 10, 14, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 16, 12, 8, 4, 2, 6, 10, 14, 18, 22, 18, 14, 10, 6, 2, 4, 8, 12, 16, 20, 24, 20, 16, 12, 8, 4, 2
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2009

Keywords

Comments

The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 2p_(1/2), etc. The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 1, ... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 2, ... Other sequences that arise from this sequence are A A130517, A210983, A210984. - Omar E. Pol, Sep 02 2012

Examples

			A geometric shell model of the atomic nucleus:
   +---------------------- i ----------------------+
   |   +------------------ h ------------------+   |
   |   |   +-------------- g --------------+   |   |
   |   |   |   +---------- f ----------+   |   |   |
   |   |   |   |   +------ d ------+   |   |   |   |
   |   |   |   |   |   +-- p --+   |   |   |   |   |
   |   |   |   |   |   |   s   |   |   |   |   |   |
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |       |   |   |   |   |   |
   |   |   |   |   |       2       |   |   |   |   |
   |   |   |   |       4       2       |   |   |   |
   |   |   |       6       2       4       |   |   |
   |   |       8       4       2       6       |   |
   |      10       6       2       4       8       |
      12       8       4       2       6      10
  14      10       6       2       4       8      12
   |   |   |   |   |   |   |   |   |   |   |   |   |
   |   |   |   |   |   |   +1/2+   |   |   |   |   |
   |   |   |   |   |   +--- 3/2 ---+   |   |   |   |
   |   |   |   |   +------- 5/2 -------+   |   |   |
   |   |   |   +----------- 7/2 -----------+   |   |
   |   |   +--------------- 9/2 ---------------+   |
   |   +------------------ 11/2 -------------------+
   +---------------------- 13/2 -----------------------
		

Crossrefs

Programs

  • Mathematica
    t[n_, 1] := n; t[n_, n_] := n-1;
    t[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]];
    2 Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2018 *)

Formula

a(n) = 2*A130517(n).
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = 2*(|2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n) + 3))).
a(n) = 2*(|2*n - t*t - 2*t - 3| + floor((2*n - t*t - t)/(t+3))) where t = floor((-1 + sqrt(8*n-7))/2). (End)

Extensions

Corrected by Omar E. Pol, Jul 13 2009
More terms from Omar E. Pol, Jul 14 2012
New name from Omar E. Pol, Sep 02 2012

A212124 Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

2, 6, 8, 14, 16, 20, 28, 32, 38, 40, 50, 58, 64, 68, 70, 82, 92, 100, 106, 110, 112, 126, 136, 142, 154, 162, 164, 168, 184
Offset: 1

Views

Author

Omar E. Pol, Jun 03 2012

Keywords

Comments

First differs from A213364 at a(12).

Examples

			Example 1: written as a triangle in which apparently row i is related to the (i-1)st level of nucleus. Triangle begins:
2;
6,     8;
14,   16,  20;
28,   32,  38,  40;
50,   58,  64,  68,  70;
82,   92, 100, 106, 110, 112;
126, 136, 142, 154, 162, 164, 168;
...
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. In this case note that row 4 has only one term. Triangle begins:
2;
6,     8;
14,   16,  20;
28,
32,   38,  40,  50;
58,   64,  68,  70,  82;
92,  100, 106, 110, 112, 126;
136, 142, 154, 162, 164, 168, 184;
...
First seven terms of right border give the "magic numbers" A018226.
		

References

  • M. Goeppert Mayer and J. Hans D. Jensen, Elementary Theory of Nuclear Shell Structure, J. Wiley and Sons, Inc. (1955).

Crossrefs

Partial sums of A212122. Other versions are A210984, A212014, A213364, A213374.

Formula

a(n) = 2*A212123(n).

A213364 Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

2, 6, 8, 14, 16, 20, 28, 32, 38, 40, 50, 56, 64, 66, 70, 82, 90, 94, 108, 118, 120, 126, 136, 148, 164, 170, 172, 180, 184
Offset: 1

Views

Author

Omar E. Pol, Jun 23 2012

Keywords

Comments

First differs from A212124 at a(12).

Examples

			Written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that row 4 has only one term. Triangle begins:
2;
6,     8;
14,   16,  20;
28;
32,   38,  40,  50;
56,   64,  66,  70,  82;
90,   94, 108, 118, 120, 126;
136, 148, 164, 170, 172, 180, 184;
...
First seven terms of right border give the "magic numbers" A018226
		

References

  • I. Talmi, Simple Models of Complex Nuclei, Hardwood Academic Publishers (1993).

Crossrefs

Partial sums of A213362. Other versions are A210984, A212014, A212124, A213374.

Formula

a(n) = 2*A213363(n).

A212014 Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

2, 6, 8, 14, 18, 20, 28, 34, 38, 40, 50, 58, 64, 68, 70, 82, 92, 100, 106, 110, 112, 126, 138, 148, 156, 162, 166, 168, 184, 198, 210, 220, 228, 234, 238, 240, 258, 274, 288, 300, 310, 318, 324, 328, 330, 350, 368, 384, 398, 410, 420, 428, 434, 438, 440, 462, 482, 500, 516, 530, 542, 552, 560, 566, 570, 572
Offset: 1

Views

Author

Omar E. Pol, Jul 15 2012

Keywords

Examples

			Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins:
    2;
    6,   8;
   14,  18,  20;
   28,  34,  38,  40;
   50,  58,  64,  68,  70;
   82,  92, 100, 106, 110, 112;
  126, 138, 148, 156, 162, 166, 168;
  ...
Column 1 gives positive terms of A033547. Right border gives positive terms of A007290.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. In this case note that row 4 has only one term. Triangle begins:
    2;
    6,   8;
   14,  18,  20;
   28;
   34,  38,  40,  50;
   58,  64,  68,  70,  82;
   92, 100, 106, 110, 112, 126;
  138, 148, 156, 162, 166, 168, 184;
  ...
First seven terms of right border give the "magic numbers" A018226.
		

References

  • M. Goeppert Mayer, Nuclear configurations in the spin-orbit coupling model. I. Empirical evidence, Phys. Rev. 78: 16 (1950). II. Theoretical considerations, Phys. Rev. 78: 22 (1950).

Crossrefs

Partial sums of A212012. Other versions are A210984, A212124, A213364, A213374.

Programs

  • Mathematica
    2*Accumulate[Flatten[Range[Range[15], 1, -1]]] (* Paolo Xausa, Mar 14 2025 *)

Formula

a(n) = 2*A212013(n).

A213374 Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

2, 6, 8, 14, 16, 20, 28, 32, 38, 40, 50, 58, 64, 76, 80, 82, 90, 100, 114, 118, 124, 126
Offset: 1

Views

Author

Omar E. Pol, Jul 16 2012

Keywords

Comments

First differs from A212124 at a(14). For more information see A213372.

Examples

			Written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that row 4 has only one term. Triangle begins:
2;
6,    8;
14,  16,  20;
28;
32,  38,  40,  50;
58,  64,  76,  80,  82;
90, 100, 114, 118, 124, 126;
...
First seven terms of right border give the "magic numbers" A018226.
		

Crossrefs

Partial sums of A213372. Other versions are A210984, A212014, A212124, A213364.

Formula

a(n) = 2*A213373(n).

A210983 Total number of pairs of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

1, 3, 4, 7, 8, 10, 14, 16, 17, 20, 25, 28, 29, 31, 35, 41, 45, 47, 48, 51, 56, 63, 68, 71, 72, 74, 78, 84, 92, 98, 102, 104, 105, 108, 113, 120, 129, 136, 141, 144, 145, 147, 151, 157, 165, 175, 183, 189, 193, 195, 196, 199, 204, 211, 220, 231
Offset: 1

Views

Author

Omar E. Pol, Jul 14 2012

Keywords

Comments

Additional comments from Omar E. Pol, Sep 02 2012: (Start)
Q: What are energy levels?
A: See the link sections of A212122, A213362, A213372. For example, see this link related to A213372: http://www.flickr.com/photos/mitopencourseware/3772864128/in/set-72157621892931990
Q: What defines the order in A212121?
A: The order of A212121 is defined by A212122.
Note that there are at least five versions of the nuclear shell model in the OEIS:
Goeppert-Mayer (1950): A212012, A004736, A212013, A212014.
Goeppert-Mayer, Jensen (1955): A212122, A212121, A212123, A212124.
Talmi (1993): A213362, A213361, A213363, A213364.
For another version: A162630, A130517, A210983, A210984.
Each version is represented by four sequences: the first sequence is the main entry.
(End)
For additional information see A162630.

Examples

			Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus, the sequence begins:
1;
3,     4;
7,     8,  10;
14,   16,  17,  20;
25,   28,  29,  31,  35;
41,   45,  47,  48,  51,  56;
63,   68,  71,  72,  74,  78,  84;
92,   98, 102, 104, 105, 108, 113, 120;
129, 136, 141, 144, 145, 147, 151, 157, 165;
175, 183, 189, 193, 195, 196, 199, 204, 211, 220;
...
Column 1 gives positive terms of A004006. Right border gives positives terms of A000292.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that in this case row 4 has only one term. Triangle begins:
1;
3,     4;
7,     8,  10;
14;
16,   17,  20,  25;
28,   29,  31,  35,  41;
45,   47,  48,  51,  56,  63;
68,   71,  72,  74,  78,  84,  92;
98,  102, 104, 105, 108, 113, 120, 129;
136, 141, 144, 145, 147, 151, 157, 165, 175;
183, 189, 193, 195, 196, 199, 204, 211, 220, 231;
...
		

Crossrefs

Partial sums of A130517 (when that sequence is regarded as a flattened triangle). Other versions are A212013, A212123, A213363, A213373.

Formula

a(n) = A210984(n)/2.
Showing 1-6 of 6 results.