A211012 Total area of all squares and rectangles after 2^n stages in the toothpick structure of A139250, assuming the toothpicks have length 2.
0, 0, 8, 48, 224, 960, 3968, 16128, 65024, 261120, 1046528, 4190208, 16769024, 67092480, 268402688, 1073676288, 4294836224, 17179607040, 68718952448, 274876858368, 1099509530624, 4398042316800, 17592177655808, 70368727400448, 281474943156224
Offset: 0
Examples
For n = 3 the area of all squares and rectangles in the toothpick structure after 2^3 stages equals the area of a rectangle of size 8X6, so a(3) = 8*6 = 48.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Eric Weisstein's World of Mathematics, Minimum Vertex Coloring.
- Eric Weisstein's World of Mathematics, Sunlet Graph.
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Crossrefs
Programs
-
PARI
concat(vector(2), Vec(8*x^2/((1-2*x)*(1-4*x)) + O(x^50))) \\ Colin Barker, Mar 30 2016
Formula
From Colin Barker, Mar 30 2016: (Start)
G.f.: 8*x^2 / ((1-2*x)*(1-4*x)).
a(n) = 6*a(n-1)-8*a(n-2) for n>2. (End)
E.g.f.: (1 - exp(2*x))^2. - Stefano Spezia, Mar 12 2025
Comments