A211034 Number of 2 X 2 matrices having all elements in {0,1,...,n} and determinant = 1 (mod 3).
0, 3, 24, 52, 164, 384, 592, 1131, 1944, 2628, 4128, 6144, 7744, 10955, 15000, 18100, 23988, 31104, 36432, 46179, 57624, 66052, 81056, 98304, 110848, 132723, 157464, 175284, 205860, 240000, 264400, 305723, 351384, 383812, 438144, 497664, 539712, 609531
Offset: 0
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,4,-4,0,-6,6,0,4,-4,0,-1,1).
Programs
-
Mathematica
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}] v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}] w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}] Table[u[n], {n, 0, z1}] (* A211033 *) Table[v[n], {n, 0, z1}] (* A211034 *) Table[w[n], {n, 0, z1}] (* A211034 *) LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {0, 3, 24, 52, 164, 384, 592, 1131, 1944, 2628, 4128, 6144, 7744}, 60] (* Vincenzo Librandi, Nov 29 2016 *)
-
Python
from _future_ import division def A211034(n): x,y,z = n//3 + 1, (n-1)//3 + 1, (n-2)//3 + 1 return x**2*y**2 + 2*x**2*y*z + x**2*z**2 + 2*x*y**3 + 6*x*y**2*z + 6*x*y*z**2 + 2*x*z**3 + 2*y**3*z + 2*y*z**3 # Chai Wah Wu, Nov 28 2016
Formula
From Chai Wah Wu, Nov 28 2016: (Start)
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n > 12.
G.f.: -x*(4*x^9 + 20*x^8 + 59*x^7 + 109*x^6 + 96*x^5 + 136*x^4 + 100*x^3 + 28*x^2 + 21*x + 3)/((x - 1)^5*(x^2 + x + 1)^4).
If r = floor(n/3)+1, s = floor((n-1)/3)+1 and t = floor((n-2)/3)+1, then:
a(n) = r^2*s^2 + 2*r^2*s*t + r^2*t^2 + 2*r*s^3 + 6*r*s^2*t + 6*r*s*t^2 + 2*r*t^3 + 2*s^3*t + 2*s*t^3.
If n == 0 mod 3, then a(n) = 4*n^2*(2*n^2 + 6*n + 3)/27.
If n == 1 mod 3, then a(n) = (8*n^4 + 28*n^3 + 33*n^2 + 16*n - 4)/27.
If n == 2 mod 3, then a(n) = 8*(n + 1)^4/27. (End)
Comments