cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211223 Numbers k for which sigma(k) = sigma(x) + sigma(y), where k = x + y.

Original entry on oeis.org

3, 8, 9, 10, 15, 20, 21, 30, 32, 33, 39, 40, 49, 51, 55, 56, 57, 62, 63, 69, 70, 75, 85, 87, 88, 90, 92, 93, 94, 96, 99, 104, 105, 108, 110, 111, 114, 116, 117, 123, 125, 126, 128, 129, 130, 134, 135, 136, 140, 141, 145, 147, 150, 152, 153, 155, 158, 159, 160
Offset: 1

Views

Author

Paolo P. Lava, Apr 27 2012

Keywords

Comments

A211225(a(n)) > 0. - Reinhard Zumkeller, Jan 06 2013

Examples

			sigma(49) = sigma(8) + sigma(41) that is 57 = 15 + 42.
sigma(93) = sigma(31) + sigma(62) that is 128 = 32 + 96.
In more than one way: sigma(117) = sigma(41) + sigma(76) = sigma(52) + sigma(65) = sigma(56) + sigma(61) that is 182 = 42 + 140 = 98 + 84 = 120 + 62.
		

Crossrefs

Programs

  • Haskell
    a211223 n = a211223_list !! (n-1)
    a211223_list = map (+ 1) $ findIndices (> 0) a211225_list
    -- Reinhard Zumkeller, Jan 06 2013
  • Maple
    with(numtheory);
    A211223:=proc(q)
    local i,n;
    for n from 1 to q do
      for i from 1 to trunc(n/2) do
        if sigma(i)+sigma(n-i)=sigma(n) then print(n); break; fi;
    od; od; end:
    A211223(10000);
  • Mathematica
    sigmaPartitionQ[n_] := With[{s = DivisorSigma[1, n], ip = IntegerPartitions[ n, {2}]}, MemberQ[ip, {x_, y_} /; s == DivisorSigma[ 1, x] + DivisorSigma[ 1, y]]]; Select[Range[160], sigmaPartitionQ] (* Jean-François Alcover, Aug 19 2013 *)
  • PARI
    is(n)=my(t=sigma(n));for(i=1,n\2,if(sigma(i)+sigma(n-i)==t, return(1))) \\ Charles R Greathouse IV, May 04 2012