cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A211225 Number of ways to represent sigma(n) as sigma(x) + sigma(y) where x+y = n.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2
Offset: 1

Views

Author

Paolo P. Lava, May 07 2012

Keywords

Comments

From an idea of Charles R Greathouse IV.
a(A211223(n)) > 0. - Reinhard Zumkeller, Jan 06 2013

Examples

			a(3)=1 because sigma(3)=sigma(1)+sigma(2)=4;
a(32)=2 because sigma(32)=sigma(4)+sigma(28)=sigma(14)+sigma(18)=63;
a(117)=3 because sigma(117)=sigma(41)+sigma(76)=sigma(52)+sigma(65)=sigma(56)+sigma(61)=182; etc.
		

Crossrefs

Programs

  • Haskell
    a211225 n = length $ filter (== a000203 n) $ zipWith (+) us' vs where
       (us,vs@(v:_)) = splitAt (fromInteger $ (n - 1) `div` 2) a000203_list
       us' = if even n then v : reverse us else reverse us
    -- Reinhard Zumkeller, Jan 06 2013
  • Maple
    with(numtheory);
    A211225:=proc(q)
    local b,i,n;
    for n from 1 to q do
      b:=0;
      for i from 1 to trunc(n/2) do
        if sigma(i)+sigma(n-i)=sigma(n) then b:=b+1; fi;
      od;
      print(b)
    od; end:
    A211225(1000);
  • Mathematica
    a[n_] := With[{s = DivisorSigma[1, n]}, Sum[Boole[s == DivisorSigma[1, x] + DivisorSigma[1, n-x]], {x, 1, Quotient[n, 2]}]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 04 2023 *)
  • PARI
    a(n)=my(t=sigma(n)); sum(i=1, n\2, sigma(i)+sigma(n-i)==t) \\ Charles R Greathouse IV, May 07 2012
    

A211224 Least k with precisely n partitions k = x + y satisfying sigma(k) = sigma(x) + sigma(y).

Original entry on oeis.org

3, 32, 117, 183, 393, 728, 933, 2193, 2528, 1173, 6136, 2990, 4070, 8211, 11488, 12616, 6112, 22287, 20584, 37468, 38675, 35245, 41416, 55825, 43616, 66385, 56810, 94040, 88736, 93975, 90068, 174515, 169376, 146965, 139196, 210453, 140576, 177248
Offset: 1

Views

Author

Paolo P. Lava, May 04 2012

Keywords

Comments

Subset of A211223.

Examples

			a(7)=933; 933 has 7 partitions of two numbers, x and y, for which sigma(933) = sigma(x) + sigma(y) = 1248. In fact:
sigma(311) + sigma(622) = 312 + 936 = 1248;
sigma(322) + sigma(611) = 576 + 672 = 1248;
sigma(370) + sigma(563) = 684 + 564 = 1248;
sigma(391) + sigma(542) = 432 + 816 = 1248;
sigma(398) + sigma(535) = 600 + 648 = 1248;
sigma(407) + sigma(526) = 456 + 792 = 1248;
sigma(442) + sigma(491) = 756 + 492 = 1248;
Furthermore 933 is the minimum number to have this property.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A211224:=proc(q)
    local a,b,i,j,n,v;
    v:=array(1..10000); for n from 1 to 10000 do v[n]:=0; od;
    a:=0;
    for n from 1 to q do
      b:=0;
      for i from 1 to trunc(n/2) do
        if sigma(i)+sigma(n-i)=sigma(n) then b:=b+1; fi; od;
      if b=a+1 then a:=b; print(n); j:=1;
         while v[b+j]>0 do a:=b+j; print(v[b+j]); j:=j+1; od;
      else if b>a+1 then if v[b]=0 then v[b]:=n; fi; fi; fi;
    od; end:
    A211224(1000);
  • PARI
    ct(n)=my(t=sigma(n));sum(i=1,n\2,sigma(i)+sigma(n-i)==t)
    v=vector(100);for(n=1,1e5,t=ct(n);if(t&&t<=#v&&!v[t],v[t]=n));v
    \\ Charles R Greathouse IV, May 04 2012

A212662 Numbers k for which k' = x' + y', where x > 0, k = x + y, and k', x', y' are the arithmetic derivatives of k, x, y.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 30, 33, 36, 39, 42, 45, 48, 50, 51, 54, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 82, 84, 85, 87, 90, 93, 95, 96, 99, 100, 102, 105, 108, 110, 111, 114, 116, 117, 120, 121, 123, 125, 126, 129, 132, 135, 138, 141, 144, 145
Offset: 1

Views

Author

Paolo P. Lava, May 23 2012

Keywords

Examples

			k=24, x=8, y=16 and 24=8+16; k'=44, x'=12, y'=32 and 44=12+32.
In more than one way:
k=39, x=4, y=35 and 39=4+35; k'=16, x'=4, y'=12 and 16=4+12;
k=39, x=13, y=26 and 39=13+26; k'=16, x’=1, y'=15 and 16=1+15.
k=255, x=54, y=201 and 255=54+201; k'=151, x'=81, y'=70 and 16=4+12;
k=255, x=85, y=170 and 255=85+170; k'=151, x'=22, y'=129 and 16=1+15;
k=255, x=114, y=141 and 39=13+26; k'=151, x'=101, y'=50 and 16=1+15.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A212662:=proc(q)
    local a,b,c,i,n,p,pfs;
    for n from 1 to q do
      pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs);
      for i from 1 to trunc(n/2) do
        pfs:=ifactors(i)[2]; b:=i*add(op(2,p)/op(1,p),p=pfs);
        pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2,p)/op(1,p),p=pfs);
        if a=b+c then print(n); break; fi;
      od;
    od; end:
    A212662(1000);
  • PARI
    ard(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(m) = for (k=1, m\2, if (ard(m-k)+ard(k) == ard(m), return(1))); \\ Michel Marcus, Aug 27 2022

A212663 Number of ways to represent n’ as x’ + y’, where x+y = n, x > 0, and n’, x’, y’ are the arithmetic derivatives of n, x, y.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1
Offset: 1

Views

Author

Paolo P. Lava, May 23 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    A212663:=proc(q)
    local a,b,c,i,n,p,pfs,t;
    for n from 1 to q do
      pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs); t:=0;
      for i from 1 to trunc(n/2) do
       pfs:=ifactors(i)[2]; b:=i*add(op(2,p)/op(1,p),p=pfs);
       pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2,p)/op(1,p),p=pfs);
       if a=b+c then t:=t+1; fi;
      od;
      print(t);
    od; end:
    A212663(1000);

A212664 Least k with precisely n partitions k = x + y satisfying x > 0 and k’ = x’ + y’, where k’, x’, y’ are the arithmetic derivatives of k, x, y.

Original entry on oeis.org

3, 39, 213, 903, 2379, 2343, 6545, 12325, 15015, 16107, 45045, 134225, 80535, 142545, 205205, 255255, 346035, 533715, 615615, 645645, 997815, 1601145, 1369095, 1936935
Offset: 1

Views

Author

Paolo P. Lava, May 23 2012

Keywords

Examples

			n=2343, x=162, y=2181 and 2343=162+2181; n’=1027, x’=297, y’=730 and 1027=297+730.
n=2343, x=308, y=2035 and 2343=308+2035; n’=1027, x’=380, y’=647 and 1027=+380+647.
n=2343, x=377, y=1966 and 2343=377+1966; n’=1027, x’=42, y’=985 and 1027=42+985.
n=2343, x=484, y=1859 and 2343=484+1859; n’=1027, x’=572, y’=455 and 1027=572+455.
n=2343, x=505, y=1838 and 2343=505+1838; n’=1027, x’=106, y’=921 and 1027=106+921.
n=2343, x=781, y=1562 and 2343=781+1562; n’=1027, x’=82, y’=945 and 1027=82+945.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A212664:=proc(q)
    local a, b, c, d, f, i, j, n, p, pfs, v;
    v:=array(1..100); for n from 1 to 100 do v[n]:=0; od;
    a:=0;
    for n from 1 to q do
      pfs:=ifactors(n)[2]; c:=n*add(op(2,p)/op(1,p),p=pfs); b:=0;
      for i from 1 to trunc(n/2) do
        pfs:=ifactors(i)[2]; d:=i*add(op(2,p)/op(1,p),p=pfs);
        pfs:=ifactors(n-i)[2]; f:=(n-i)*add(op(2,p)/op(1,p),p=pfs);
        if c=d+f then b:=b+1; fi; od;
        if b=a+1 then a:=b; print(b,n); j:=1;
           while v[b+j]>0 do a:=b+j; print(b,v[b+j]); j:=j+1; od;
        else if b>a+1 then if v[b]=0 then v[b]:=n; fi; fi; fi;
    od; end:
    A212664(100000);

Extensions

a(12)-a(24) from Donovan Johnson, May 25 2012

A218852 Numbers n for which sigma(n) = sigma(x) + sigma(y) + sigma(z), where n = x + y + z, with x, y, z all positive.

Original entry on oeis.org

5, 7, 10, 13, 14, 15, 16, 19, 20, 21, 25, 26, 27, 28, 31, 32, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 69, 70, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Jon Perry, Nov 07 2012

Keywords

Comments

Contains the greater of every twin prime pair.

Examples

			sigma(1) + sigma(1) + sigma(3) = sigma(5) = 6.
sigma(2) + sigma(2) + sigma(6) = sigma(10) = 18.
*sigma(2) + sigma(8) + sigma(30) = sigma(40) = 90.
*sigma(6) + sigma(10) + sigma(24) = sigma(40) = 90.
sigma(8) + sigma(8) + sigma(24) = sigma(40) = 90.
Hence, 5, 10 and 40 are in the sequence.
Note that (*) means that (x+y+z) divides xyz as well.
		

Crossrefs

Programs

  • Maple
    isA218852 := proc(n)
        local x,y,z ;
        for x from 1 to n-2 do
            for y from x to n-x-1 do
                z := n-x-y ;
                if numtheory[sigma](x)+numtheory[sigma](y)+numtheory[sigma](z) = numtheory[sigma](n) then
                    return true;
                end if;
            end do:
        end do:
        return false;
    end proc:
    for n from 3 to 120 do
        if isA218852(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Nov 07 2012
  • Mathematica
    xyzQ[n_]:=Module[{ips=Total/@(DivisorSigma[1,#]&/@IntegerPartitions[n,{3}])},Total[Boole[DivisorSigma[1,n]==#&/@ips]]>0]; Select[Range[ 100], xyzQ] (* Harvey P. Dale, Jun 22 2020 *)

A210732 Numbers n for which sigma*(n)=sigma*(x)+sigma*(y), where n=x+y and sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

6, 9, 15, 18, 21, 24, 27, 30, 31, 33, 37, 39, 43, 44, 46, 47, 53, 56, 57, 62, 65, 66, 70, 73, 74, 75, 76, 78, 81, 83, 86, 88, 90, 91, 92, 93, 97, 99, 102, 103, 106, 107, 109, 110, 114, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 129, 131, 133, 135, 136
Offset: 3

Views

Author

Paolo P. Lava, May 10 2012

Keywords

Comments

Similar to A211223 but using anti-divisors.

Examples

			sigma*(127)=sigma*(45)+sigma*(82) that is 212=86+126.
In more than one way:
sigma*(133)=sigma*(50)+sigma*(83)=sigma*(52)+sigma*(81) that is
204=80+124=94+110.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A210732:=proc(q)
    local a,b,c,i,j,k,n;
    for n from 3 to q do
      a:=0;
      for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      for i from 1 to trunc(n/2) do
       b:=0; c:=0;
       for k from 2 to i-1 do if abs((i mod k)-k/2)<1 then b:=b+k; fi; od;
       for k from 2 to n-i-1 do if abs(((n-i) mod k)-k/2)<1 then c:=c+k; fi; od;
       if a=b+c then print(n); break; fi;
      od;
    od; end:
    A210732(10000);

A375154 Least k with exactly n partitions k = x + y + z satisfying sigma(k) = sigma(x) + sigma(y) + sigma(z).

Original entry on oeis.org

5, 25, 33, 39, 38, 58, 65, 86, 123, 85, 82, 92, 98, 152, 99, 158, 106, 135, 153, 145, 215, 186, 142, 189, 235, 178, 185, 165, 147, 315, 274, 231, 214, 305, 171, 332, 207, 290, 310, 344, 266, 358, 583, 297, 261, 278, 285, 488, 255, 334, 302, 369, 309, 2888, 284
Offset: 1

Views

Author

Paolo P. Lava, Aug 01 2024

Keywords

Comments

No other prime apart from initial 5.

Examples

			a(7) = 65 and 65 has 7 partitions of three numbers, x, y and z, for which sigma(65) = sigma(x) + sigma(y) + sigma(z) = 84. In fact:
sigma(2) + sigma(14) + sigma(49) = 3 + 24 + 57 = 84;
sigma(3) + sigma(7) + sigma(55) = 4 + 8 + 72 = 84;
sigma(3) + sigma(23) + sigma(39) = 4 + 24 + 56 = 84;
sigma(5) + sigma(5) + sigma(55) = 6 + 6 + 72 = 84;
sigma(7) + sigma(19) + sigma(39) = 8 + 20 + 56 = 84;
sigma(10) + sigma(14) + sigma(41) = 18 + 24 + 42 = 84;
sigma(13) + sigma(13) + sigma(39) = 14 + 14 + 56 = 84;
Furthermore 65 is the minimum number to have this property.
		

Crossrefs

Programs

A218011 Numbers n for which n’ = x’*y’, where x>0, y>0, n = x + y and n’, x’, y’ are the arithmetic derivatives of n, x, y.

Original entry on oeis.org

5, 7, 13, 19, 31, 43, 48, 55, 61, 73, 74, 87, 103, 106, 109, 117, 139, 146, 151, 159, 160, 178, 181, 193, 199, 202, 208, 212, 225, 229, 236, 241, 252, 267, 268, 271, 283, 285, 298, 313, 349, 357, 362, 386, 403, 411, 421, 433, 455, 463, 496, 511, 519, 523, 535
Offset: 1

Views

Author

Paolo P. Lava, Oct 18 2012

Keywords

Comments

The greatest prime in a twin primes couple is in the sequence. In fact if the twin primes are a and b, with a

Examples

			n= 612, x=85,  y=527; n’=1056, x’=22, y’=48 and 1056=22*48.
n= 752, x=361, y=391; n’=1520, x’=38, y’=40 and 1520=38*40.
n= 779, x=36,  y=743; n’=60,   x’=60, y’=1  and 60=60*1.
		

Crossrefs

Subsequences: A006512 (primes in this sequence), A370126 (k with a solution where both x and y are composite).

Programs

  • Maple
    with(numtheory);
    A218011:= proc(i)
    local a,b,c,n,p,pfs,q;
    for n from 1 to i do
    for q from 1 to trunc(n/2) do
      a:=q*add(op(2,p)/op(1,p),p= ifactors(q)[2]);
      b:=(n-q)*add(op(2,p)/op(1,p),p= ifactors(n-q)[2]);
      c:=n*add(op(2,p)/op(1,p),p= ifactors(n)[2]);
      if c=a*b then lprint(n,q,n-q); break; fi;
    od; od;
    end:
    A218011(1000000);
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; f[n_] := Select[Range[n/2], dn[#]*dn[n - #] == dn[n] &]; Select[Range[535], Length[f[#]] > 0 &] (* T. D. Noe, Oct 18 2012 *)
  • PARI
    up_to = 2^18;
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    v003415 = vector(up_to,n,A003415(n));
    isA218011(n) = { my(z=v003415[n]); for(x=2,ceil(n/2),if(!(z%v003415[x]), if(z==v003415[x]*v003415[n-x], return(1)))); (0); }; \\ Antti Karttunen, Feb 22 2024

A373047 Least k with exactly n partitions k = x + y + z satisfying sigma*(k) = sigma*(x) + sigma*(y) + sigma*(z), where sigma*(k) is the sum of the anti-divisors of k.

Original entry on oeis.org

11, 33, 16, 20, 26, 37, 40, 19, 43, 46, 93, 91, 80, 76, 39, 78, 155, 103, 74, 135, 128, 152, 116, 117, 190, 104, 187, 138, 168, 147, 160, 223, 208, 403, 281, 173, 163, 170, 250, 243, 272, 257, 258, 232, 222, 278, 266, 245, 352, 253, 279, 256, 288, 295, 231, 291
Offset: 1

Author

Paolo P. Lava, Aug 02 2024

Keywords

Examples

			a(7) = 40 and 40 has 7 partitions of three numbers, x, y and
z, for which sigma*(65) = sigma*(x) + sigma*(y) + sigma*(z) = 55. In fact:
sigma*(1) + sigma*+(4) + sigma*(35) = 0 + 3 + 52 = 55;
sigma*(1) + sigma*(12) + sigma*(27) = 0 + 13 + 42 = 55;
sigma*(1) + sigma*(14) + sigma*(25) = 0 + 16 + 39 = 55;
sigma*(4) + sigma*(14) + sigma*(22) = 3 + 16 + 36 = 55;
sigma*(5) + sigma*(8) + sigma*(27) = 5 + 8 + 42 = 55;
sigma*(9) + sigma*(13) + sigma*(18) = 8 + 19 + 28 = 55;
sigma*(10) + sigma*(12) + sigma*(18) = 14 + 13 + 28 = 55;
Furthermore 40 is the minimum number to have this property.
		
Showing 1-10 of 13 results. Next