cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A212662 Numbers k for which k' = x' + y', where x > 0, k = x + y, and k', x', y' are the arithmetic derivatives of k, x, y.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 30, 33, 36, 39, 42, 45, 48, 50, 51, 54, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 82, 84, 85, 87, 90, 93, 95, 96, 99, 100, 102, 105, 108, 110, 111, 114, 116, 117, 120, 121, 123, 125, 126, 129, 132, 135, 138, 141, 144, 145
Offset: 1

Views

Author

Paolo P. Lava, May 23 2012

Keywords

Examples

			k=24, x=8, y=16 and 24=8+16; k'=44, x'=12, y'=32 and 44=12+32.
In more than one way:
k=39, x=4, y=35 and 39=4+35; k'=16, x'=4, y'=12 and 16=4+12;
k=39, x=13, y=26 and 39=13+26; k'=16, x’=1, y'=15 and 16=1+15.
k=255, x=54, y=201 and 255=54+201; k'=151, x'=81, y'=70 and 16=4+12;
k=255, x=85, y=170 and 255=85+170; k'=151, x'=22, y'=129 and 16=1+15;
k=255, x=114, y=141 and 39=13+26; k'=151, x'=101, y'=50 and 16=1+15.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A212662:=proc(q)
    local a,b,c,i,n,p,pfs;
    for n from 1 to q do
      pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs);
      for i from 1 to trunc(n/2) do
        pfs:=ifactors(i)[2]; b:=i*add(op(2,p)/op(1,p),p=pfs);
        pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2,p)/op(1,p),p=pfs);
        if a=b+c then print(n); break; fi;
      od;
    od; end:
    A212662(1000);
  • PARI
    ard(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(m) = for (k=1, m\2, if (ard(m-k)+ard(k) == ard(m), return(1))); \\ Michel Marcus, Aug 27 2022

A212663 Number of ways to represent n’ as x’ + y’, where x+y = n, x > 0, and n’, x’, y’ are the arithmetic derivatives of n, x, y.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1
Offset: 1

Views

Author

Paolo P. Lava, May 23 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    A212663:=proc(q)
    local a,b,c,i,n,p,pfs,t;
    for n from 1 to q do
      pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs); t:=0;
      for i from 1 to trunc(n/2) do
       pfs:=ifactors(i)[2]; b:=i*add(op(2,p)/op(1,p),p=pfs);
       pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2,p)/op(1,p),p=pfs);
       if a=b+c then t:=t+1; fi;
      od;
      print(t);
    od; end:
    A212663(1000);

A218011 Numbers n for which n’ = x’*y’, where x>0, y>0, n = x + y and n’, x’, y’ are the arithmetic derivatives of n, x, y.

Original entry on oeis.org

5, 7, 13, 19, 31, 43, 48, 55, 61, 73, 74, 87, 103, 106, 109, 117, 139, 146, 151, 159, 160, 178, 181, 193, 199, 202, 208, 212, 225, 229, 236, 241, 252, 267, 268, 271, 283, 285, 298, 313, 349, 357, 362, 386, 403, 411, 421, 433, 455, 463, 496, 511, 519, 523, 535
Offset: 1

Views

Author

Paolo P. Lava, Oct 18 2012

Keywords

Comments

The greatest prime in a twin primes couple is in the sequence. In fact if the twin primes are a and b, with a

Examples

			n= 612, x=85,  y=527; n’=1056, x’=22, y’=48 and 1056=22*48.
n= 752, x=361, y=391; n’=1520, x’=38, y’=40 and 1520=38*40.
n= 779, x=36,  y=743; n’=60,   x’=60, y’=1  and 60=60*1.
		

Crossrefs

Subsequences: A006512 (primes in this sequence), A370126 (k with a solution where both x and y are composite).

Programs

  • Maple
    with(numtheory);
    A218011:= proc(i)
    local a,b,c,n,p,pfs,q;
    for n from 1 to i do
    for q from 1 to trunc(n/2) do
      a:=q*add(op(2,p)/op(1,p),p= ifactors(q)[2]);
      b:=(n-q)*add(op(2,p)/op(1,p),p= ifactors(n-q)[2]);
      c:=n*add(op(2,p)/op(1,p),p= ifactors(n)[2]);
      if c=a*b then lprint(n,q,n-q); break; fi;
    od; od;
    end:
    A218011(1000000);
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; f[n_] := Select[Range[n/2], dn[#]*dn[n - #] == dn[n] &]; Select[Range[535], Length[f[#]] > 0 &] (* T. D. Noe, Oct 18 2012 *)
  • PARI
    up_to = 2^18;
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    v003415 = vector(up_to,n,A003415(n));
    isA218011(n) = { my(z=v003415[n]); for(x=2,ceil(n/2),if(!(z%v003415[x]), if(z==v003415[x]*v003415[n-x], return(1)))); (0); }; \\ Antti Karttunen, Feb 22 2024
Showing 1-3 of 3 results.