cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211232 Irregular triangle read by rows: T(n,k) is the k-th generalized Eulerian number of order n and degree 2, for n >= 1 (the rows start at k=1).

Original entry on oeis.org

1, 2, 1, 4, 1, 1, 7, 0, -7, -1, 1, 12, -12, -56, -12, 12, 1, 1, 21, -67, -284, 0, 284, 67, -21, -1, 1, 38, -273, -1170, 753, 3408, 753, -1170, -273, 38, 1, 1, 71, -982, -4241, 8562, 29055, 0, -29055, -8562, 4241, 982, -71, -1, 1, 136, -3314, -13888, 66335, 199616, -106113, -464880, -106113, 199616, 66335, -13888, -3314, 136, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2012

Keywords

Examples

			Triangle begins
  1,  2;
  1,  4,    1;
  1,  7,    0,    -7,  -1;
  1, 12,  -12,   -56, -12,   12,   1;
  1, 21,  -67,  -284,   0,  284,  67,   -21,   -1;
  1, 38, -273, -1170, 753, 3408, 753, -1170, -273, 38, 1;
  ...
		

Crossrefs

Row sums of even rows are A047681; row sums of odd rows are zero for n > 1.

Programs

  • PARI
    T(n,r=2)={my(R=vector(n)); R[1]=[1..r]; for(n=2, n, my(u=R[n-1]); R[n]=vector(r*n-1, k, sum(j=0, r, (k - j*n)*if(k>j && k-j<=#u, u[k-j], 0)))); R}
    { my(A=T(7)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, May 18 2020

Formula

From Andrew Howroyd, May 18 2020: (Start)
T(n,k) = k*T(n-1,k) - (n-k)*T(n-1,k-1) - (2*n-k)*T(n-1,k-2) for n > 1.
A047681(n) = Sum_{k>=1} T(2*n, k).
(End)

Extensions

Terms a(38) and beyond from Andrew Howroyd, May 18 2020

A211233 Triangle read by rows: T(n,k) is the k-th generalized Eulerian number of order n and degree 3, n >= 1.

Original entry on oeis.org

1, 2, 3, 1, 4, 10, 4, 1, 1, 7, 27, 13, -13, -27, -7, -1, 1, 12, 69, 16, -182, -376, -182, 16, 69, 12, 1, 1, 21, 176, -88, -1375, -3123, -1608, 1608, 3123, 1375, 88, -176, -21, -1, 1, 38, 456, -886, -8292, -20322, -6536, 35890, 65862, 35890, -6536, -20322, -8292, -886, 456, 38, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2012

Keywords

Examples

			Triangle begins
  1,  2,   3;
  1,  4,  10,   4,     1;
  1,  7,  27,  13,   -13,   -27,    -7,   -1;
  1, 12,  69,  16,  -182,  -376,  -182,   16,   69,   12,  1;
  1, 21, 176, -88, -1375, -3123, -1608, 1608, 3123, 1375, 88, ... ;
  ...
		

Crossrefs

Row sums of even rows are A047682; row sums of odd rows are zero for n > 1.

Programs

  • PARI
    T(n,r=3)={my(R=vector(n)); R[1]=[1..r]; for(n=2, n, my(u=R[n-1]); R[n]=vector(r*n-1, k, sum(j=0, r, (k - j*n)*if(k>j && k-j<=#u, u[k-j], 0)))); R}
    {my(A=T(5)); for(n=1, #A, print(A[n]))} \\ Andrew Howroyd, May 18 2020

Formula

From Andrew Howroyd, May 18 2020: (Start)
T(n,k) = k*T(n-1,k) - (n-k)*T(n-1,k-1) - (2*n-k)*T(n-1,k-2) - (3*n-k)*T(n-1,k-3) for n > 1.
A047682(n) = Sum_{k>=1} T(2*n, k).
(End)

Extensions

Terms a(39) and beyond from Andrew Howroyd, May 18 2020

A211234 Triangle read by rows: T(n,k) is the k-th generalized Eulerian number of order n and degree 4, n >= 1.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 10, 20, 10, 4, 1, 1, 7, 27, 77, 57, 0, -57, -77, -27, -7, -1, 1, 12, 69, 272, 221, -272, -1084, -1688, -1084, -272, 221, 272, 69, 12, 1, 1, 21, 176, 936, 625, -3288, -11868, -21023, -16223, 0, 16223, 21023, 11868, 3288, -625, -936, -176, -21, -1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2012

Keywords

Examples

			Triangle begins:
  1, 2,  3,  4;
  1, 4, 10, 20, 10, 4,   1;
  1, 7, 27, 77, 57, 0, -57, -77, -27, -7, -1;
  ...
		

Crossrefs

Row sums of even rows are A047683; row sums of odd rows are zero for n > 1.

Programs

  • PARI
    T(n,r=4)={my(R=vector(n)); R[1]=[1..r]; for(n=2, n, my(u=R[n-1]); R[n]=vector(r*n-1, k, sum(j=0, r, (k - j*n)*if(k>j && k-j<=#u, u[k-j], 0)))); R}
    { my(A=T(5)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, May 18 2020

Formula

A047683(n) = Sum_{k>=1} T(2*n, k). - Andrew Howroyd, May 18 2020

Extensions

More terms from Franck Maminirina Ramaharo, Nov 30 2018
a(20) corrected by Andrew Howroyd, May 18 2020
Showing 1-3 of 3 results.