A211273
Number of integer pairs (x,y) such that 0
1, 3, 5, 7, 10, 13, 15, 19, 22, 25, 28, 32, 35, 39, 43, 46, 49, 55, 57, 62, 66, 69, 73, 78, 82, 86, 90, 95, 98, 104, 106, 112, 117, 120, 125, 131, 133, 138, 143, 148, 152, 158, 161, 166, 172, 176, 179, 186, 189, 196, 200, 204, 209, 215, 219, 225, 229, 233
Offset: 1
Keywords
Examples
a(5) counts these pairs: (1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3)
Crossrefs
Cf. A211266.
Programs
-
Mathematica
a = 1; b = n; z1 = 120; t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, {y, x, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] Table[c[n, n], {n, 1, z1}] (* A038548 *) Table[c[n, n + 1], {n, 1, z1}] (* A072670 *) Table[c[n, 2*n], {n, 1, z1}] (* A211270 *) Table[c[n, 3*n], {n, 1, z1}] (* A211271 *) Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211272 *) c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] Print Table[c1[n, n], {n, 1, z1}] (* A094820 *) Table[c1[n, n + 1], {n, 1, z1}] (* A091627 *) Table[c1[n, 2*n], {n, 1, z1}] (* A211273 *) Table[c1[n, 3*n], {n, 1, z1}] (* A211274 *) Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
Extensions
a(1)-a(2) corrected by Sean A. Irvine, Jan 22 2025
Comments