cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211318 Triangle read by rows: number of permutations of 1..n by length l of longest run (n >= 1, 1 <= l <= n).

Original entry on oeis.org

1, 0, 2, 0, 4, 2, 0, 10, 12, 2, 0, 32, 70, 16, 2, 0, 122, 442, 134, 20, 2, 0, 544, 3108, 1164, 198, 24, 2, 0, 2770, 24216, 10982, 2048, 274, 28, 2, 0, 15872, 208586, 112354, 22468, 3204, 362, 32, 2, 0, 101042, 1972904, 1245676, 264538, 39420, 4720, 462, 36, 2, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2012, based on computations by Sean A. Irvine

Keywords

Examples

			Triangle begins:
n l=1, l=2, l=3, etc...
1 [1]
2 [0, 2]
3 [0, 4, 2]
4 [0, 10, 12, 2]
5 [0, 32, 70, 16, 2]
6 [0, 122, 442, 134, 20, 2]
7 [0, 544, 3108, 1164, 198, 24, 2]
8 [0, 2770, 24216, 10982, 2048, 274, 28, 2]
9 [0, 15872, 208586, 112354, 22468, 3204, 362, 32, 2]
10 [0, 101042, 1972904, 1245676, 264538, 39420, 4720, 462, 36, 2]
11 [0, 707584, 20373338, 14909340, 3340962, 514296, 64020, 6644, 574, 40, 2]
12 [0, 5405530, 228346522, 191916532, 45173518, 7137818, 913440, 98472, 9024, 698, 44, 2]
13 [0, 44736512, 2763212980, 2646100822, 652209564, 105318770, 13760472, 1523808, 145080, 11908, 834, 48, 2]
14 [0, 398721962, 35926266244, 38932850396, 10024669626, 1649355338, 219040274, 24744720, 2419872, 206388, 15344, 982, 52, 2]
15 [0, 3807514624, 499676669254, 609137502242, 163546399460, 27356466626, 3681354658, 422335056, 42129360, 3690960, 285180, 19380, 1142, 56, 2],
...
More rows than usual are shown, in order to correct errors in David, Kendall and Barton.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262. (Contains errors for n >= 13.)
  • Sean A. Irvine, Posting to Sequence Fans Mailing List, May 02 2012

Crossrefs

Mirror image of triangle in A010026.

Programs

  • Mathematica
    <Wouter Meeussen, May 09 2012 *)
    T[n_, length_] := Module[{g, b},
    g[u_, o_, t_] := g[u, o, t] = If[u+o == 0, 1, Sum[g[o + j - 1, u - j, 2], {j, 1, u}] + If[t1, 1] = 0;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *)