A211344 Atomic Boolean functions interpreted as binary numbers.
1, 3, 5, 15, 51, 85, 255, 3855, 13107, 21845, 65535, 16711935, 252645135, 858993459, 1431655765, 4294967295, 281470681808895, 71777214294589695, 1085102592571150095, 3689348814741910323, 6148914691236517205
Offset: 0
Links
- Tilman Piesk, Table of n, a(n) for n = 0..65
- Tilman Piesk, Atomic Boolean functions in Sierpinski triangle (Wikimedia Commons)
Programs
-
MATLAB
Seq = sym(zeros(55,1)) ; Filledlines = 0 ; for m=1:10 for n=1:m Sum = sym(0) ; for k=0:2^m-1 if mod( floor( k/2^(m-n) ) ,2) == 0 Sum = Sum + 2^sym(k) ; end end Seq( Filledlines + n ) = Sum ; end Filledlines = Filledlines + m ; end
-
Python
from itertools import count, islice def A211344_gen(): # generator of terms return (sum((bool(~(m:=(1<
A211344_list = list(islice(A211344_gen(),20)) # Chai Wah Wu, May 03 2023 -
Python
def arity_and_atom_to_integer(arity, atom): result = 0 max_place = (1 << arity) - (1 << atom) - 1 for exponent in range(max_place + 1): if not bool(~max_place & max_place - exponent): place_value = 1 << exponent result += place_value return result def A211344(n, k): return arity_and_atom_to_integer(n, n-k-1) # Tilman Piesk, Jan 25 2025
Comments