cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211349 Primes p such that p-1 divides 2^p + 2.

Original entry on oeis.org

2, 3, 11, 251, 5051, 16811, 2025251, 8751251, 16607051, 28257611, 69005051, 78906251, 176775251, 210381251, 372175451, 550427051, 707025251, 854704451, 1866788051, 2441406251, 2605806251, 4249701251, 5469531251, 9304386251, 10315761251, 10915095251
Offset: 1

Views

Author

Philip A. Hoskins, Feb 06 2013

Keywords

Comments

Prime p>2 is in this sequence iff (p-1)/2 is in A015950. - Max Alekseyev, Dec 26 2017

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], Mod[2^# + 2, # - 1] == 0 &]
  • PARI
    N=10^9;
    default(primelimit,N);
    forprime(p=2,N, if (-2==Mod(2,p-1)^p, print1(p,", ")));
    /* Joerg Arndt, Feb 06 2013 */
    
  • Python
    from sympy import primerange
    A211349_list = [p for p in primerange(1,10**6) if p == 2 or pow(2,p,p-1) == p-3] # Chai Wah Wu, Mar 25 2021

Extensions

a(19)-a(47) from Giovanni Resta, Feb 10 2013
a(48)-a(177) from Max Alekseyev, Jan 06 2018