A211401 a(n) = n-th prime of the form (k concatenated with k concatenated...) n times concatenated with 1.
11, 661, 4441, 404040401, 29292929291, 5353535353531, 1291291291291291291291, 81818181818181811, 8888888888888888881, 2532532532532532532532532532531, 2282282282282282282282282282282281, 1201201201201201201201201201201201201, 3813813813813813813813813813813813813811
Offset: 1
Examples
a(1) = 11 because that is the 1st (smallest) prime of the form Concatenate(1 copy of k) with 1, for k = 1, 2, 3, .... a(2) = 661 because the 1st (smallest) prime of the form Concatenate(2 copies of k) with 1, for k = 1, 2, 3, .... is 331, and the 2nd is 661. a(3) = 4441 because the 1st (smallest) prime of the form Concatenate(3 copies of k) with 1, for k = 1, 2, 3, .... is 2221, the 2nd is 3331, and the 3rd is 4441. a(4) = 404040401 because the 1st (smallest) prime of the form Concatenate(4 copies of k) with 1, for k = 1, 2, 3, .... is 33331, the 2nd is 99991, the 3rd is 242424241, and the 4th is 404040401.
Programs
-
Maple
A211401k := proc(n,k) option remember; local p,amin; if n = 1 then amin := 1 ; else amin := procname(n-1,k)+1 ; end if; for a from amin do [seq(a,i=1..k),1] ; p := digcatL(%) ; if isprime(p) then return a; end if; end do: end proc: A211401 := proc(n) b := A211401k(n,n) ; [seq(b,i=1..n),1] ; digcatL(%) ; end proc: # R. J. Mathar, Feb 10 2013
-
Mathematica
Table[Select[Table[10 FromDigits[Flatten[IntegerDigits/@PadRight[{},k,n]]]+1,{n,1000}],PrimeQ][[k]],{k,15}] (* Harvey P. Dale, Oct 13 2022 *)
Comments