A211402 Triangle T(n,k), 0<=k<=n, given by (0,2,0,4,0,6,0,8,0,10,0,...) DELTA (1, 2, 3, 4, 5, 6, 7, 8, 9,...) where DELTA is the operator defined in A084938.
1, 0, 1, 0, 2, 3, 0, 4, 18, 15, 0, 8, 84, 180, 105, 0, 16, 360, 1500, 2100, 945, 0, 32, 1488, 10800, 27300, 28350, 10395, 0, 64, 6048, 72240, 294000, 529200, 436590, 135135, 0, 128, 24384, 463680, 2857680, 7938000, 11060280, 7567560, 2027025
Offset: 0
Examples
Triangle begins : 1 0, 1 0, 2, 3 0, 4, 18, 15 0, 8, 84, 180, 105 0, 16, 360, 1500, 2100, 945 0, 32, 1488, 10800, 27300, 28350, 10395
Formula
T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1), T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n.
G.f.: F(x,t) = 1 + x*t + (2*x+3*x^2)*t^2/2! + (4*x+18*x^2+15*x^3)*t^3/3!+ ... = Sum_{n = 0..inf}R(n,x)*t^n/n!.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = 2*(x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x.
Comments