cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187075 A Galton triangle: T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1).

Original entry on oeis.org

1, 2, 3, 4, 18, 15, 8, 84, 180, 105, 16, 360, 1500, 2100, 945, 32, 1488, 10800, 27300, 28350, 10395, 64, 6048, 72240, 294000, 529200, 436590, 135135, 128, 24384, 463680, 2857680, 7938000, 11060280, 7567560, 2027025, 256, 97920, 2904000, 26107200, 105099120, 220041360, 249729480, 145945800, 34459425
Offset: 1

Views

Author

Peter Bala, Mar 27 2011

Keywords

Comments

This is a companion triangle to A186695.
Let f(x) = (exp(2*x) + 1)^(-1/2); then the n-th derivative of f equals Sum_{k=1..n} (-1)^k*T(n,k)*(f(x))^(2*k+1). - Groux Roland, May 17 2011
Triangle T(n,k), 1 <= k <= n, given by (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...) DELTA (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2013

Examples

			Triangle begins
n\k.|...1.....2......3......4......5......6
===========================================
..1.|...1
..2.|...2.....3
..3.|...4....18.....15
..4.|...8....84....180....105
..5.|..16...360...1500...2100....945
..6.|..32..1488..10800..27300..28350..10395
..
Examples of recurrence relation:
T(4,3) = 6*T(3,3) + 5*T(3,2) = 6*15 + 5*18 = 180;
T(6,4) = 8*T(5,4) + 7*T(5,3) = 8*2100 + 7*1500 = 27300.
		

Crossrefs

Programs

  • Maple
    A187075 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 2^(n-1); else 2*k*procname(n-1, k) + (2*k-1)*procname(n-1, k-1) ; end if; end proc:seq(seq(A187075(n,k),k = 1..n),n = 1..10);
  • Mathematica
    Flatten[Table[2^(n - 2*k)*Binomial[2 k, k]*k!*StirlingS2[n, k], {n, 10}, {k, 1, n}]] (* G. C. Greubel, Jun 17 2016 *)
  • Sage
    # uses[delehamdelta from A084938]
    # Adds a first column (1,0,0,0, ...).
    def A187075_triangle(n):
        return delehamdelta([(i+1)*int(is_even(i+1)) for i in (0..n)], [i+1 for i in (0..n)])
    A187075_triangle(4)  # Peter Luschny, Oct 20 2013

Formula

T(n,k) = 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k).
Recurrence relation T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1) with boundary conditions T(1,1) = 1, T(1,k) = 0 for k >= 2.
G.f.: F(x,t) = 1/sqrt((1+x)-x*exp(2*t)) - 1 = Sum_{n >= 1} R(n,x)*t^n/n! = x*t + (2*x+3*x^2)*t^2/2! + (4*x+18*x^2+15*x^3)*t^3/3! + ....
The g.f. F(x,t) satisfies the partial differential equation dF/dt = 2*(x+x^2)*dF/dx + x*F.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = 2*(x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x.
O.g.f. for column k: (2k-1)!!*x^k/Product_{m = 1..k} (1-2*m*x) (compare with A075497). T(n,k) = (2*k-1)!!*A075497(n,k).
The row polynomials R(n,x) = Sum_{k = 1..n} T(n,k)*x^k satisfy R(n,-x-1) = (-1)^n*(1+x)/x*P(n,x) where P(n,x) is the n-th row polynomial of A186695. We also have R(n,x/(1-x)) = (x/(1-x)^n)*Q(n-1,x) where Q(n,x) is the n-th row polynomial of A156919.
T(n,k) = 2^(n-k)*A211608(n,k). - Philippe Deléham, Oct 20 2013

A211608 Triangle T(n,k), 0 <= k <= n, given by (0, 1, 0, 2, 0, 3, 0, 4, 0, 5, ...) DELTA (1, 2, 3, 4, 5, 6, 7, 8, 9, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 9, 15, 0, 1, 21, 90, 105, 0, 1, 45, 375, 1050, 945, 0, 1, 93, 1350, 6825, 14175, 10395, 0, 1, 189, 4515, 36750, 132300, 218295, 135135, 0, 1, 381, 14490, 178605, 992250, 2765070, 3783780, 2027025
Offset: 0

Views

Author

Philippe Deléham, Feb 10 2013

Keywords

Examples

			Triangle begins :
1
0, 1
0, 1,  3
0, 1,  9,   15
0, 1, 21,   90,  105
0, 1, 45,  375, 1050,   945
0, 1, 93, 1350, 6825, 14175, 10395
		

Crossrefs

Formula

T(n,k) = A048993(n,k)*A001147(k).
T(n,k) = A211402(n,k)/(2^(n-k)).
T(n,k) = k*T(n-1,k) + (2*k-1)*T(n-1,k-1), T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n.
G.f.: F(x,t) = 1 + x*t + (x+3*x^2)*t^2/2! + (x+9*x^2+15*x^3)*t^3/3! + ... = Sum_{n = 0..inf} R(n,x)* t^n/n!.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = (x+2*x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x.
R(n,x) = 1/sqrt(1 + 2*x)*Sum_{k >= 0} binomial(2*k,k)/2^k*k^n * x^k/(1 + 2*x)^k (see Boyadzhiev, eqn. 19). - Peter Bala, Jan 18 2018
Showing 1-2 of 2 results.