cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211410 Chen triprimes, triprimes (A014612) m such that m+2 is either prime or semiprime.

Original entry on oeis.org

8, 12, 20, 27, 44, 45, 63, 75, 92, 99, 105, 116, 117, 125, 147, 153, 164, 165, 171, 175, 195, 207, 212, 231, 245, 255, 261, 275, 279, 285, 325, 332, 333, 345, 356, 357, 363, 369, 387, 399, 425, 429, 435, 452, 455, 465, 477, 483, 507, 524
Offset: 1

Views

Author

Jonathan Vos Post, Feb 09 2013

Keywords

Examples

			27=3^3 and 45=3^2*9 are in the sequence because 27+2 = 29 and 45+2 = 47 are primes.
8=2^3, 12=2^2*3, and 20=2^2*5 are in the sequence because 8+2=10=2*5, 12+2=14=2*7, and 20+2=22=2*11 are semiprimes (A001358).
		

Crossrefs

Programs

  • Maple
    A211410 := proc(n)
        option remember;
        local a;
        if n = 1 then
            8;
        else
            for a from procname(n-1)+1 do
                if numtheory[bigomega](a) = 3 then
                    if isprime(a+2) or numtheory[bigomega](a+2) = 2 then
                        return a;
                    end if;
                end if;
            end do:
        end if;
    end proc:
    seq(A211410(n),n=1..80) ; # R. J. Mathar, Feb 10 2013
  • Mathematica
    Select[Range[600],PrimeOmega[#]==3&&PrimeOmega[#+2]<3&] (* Harvey P. Dale, Jul 15 2019 *)
  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List(),pq); forprime(p=2,lim\4, forprime(q=2,min(lim\2\p,p), pq=p*q; forprime(r=2,min(lim\pq,q), if(isprime(pq*r+2) || issemi(pq*r+2), listput(v,pq*r))))); Set(v) \\ Charles R Greathouse IV, Aug 23 2017