A211410 Chen triprimes, triprimes (A014612) m such that m+2 is either prime or semiprime.
8, 12, 20, 27, 44, 45, 63, 75, 92, 99, 105, 116, 117, 125, 147, 153, 164, 165, 171, 175, 195, 207, 212, 231, 245, 255, 261, 275, 279, 285, 325, 332, 333, 345, 356, 357, 363, 369, 387, 399, 425, 429, 435, 452, 455, 465, 477, 483, 507, 524
Offset: 1
Examples
27=3^3 and 45=3^2*9 are in the sequence because 27+2 = 29 and 45+2 = 47 are primes. 8=2^3, 12=2^2*3, and 20=2^2*5 are in the sequence because 8+2=10=2*5, 12+2=14=2*7, and 20+2=22=2*11 are semiprimes (A001358).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A211410 := proc(n) option remember; local a; if n = 1 then 8; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 3 then if isprime(a+2) or numtheory[bigomega](a+2) = 2 then return a; end if; end if; end do: end if; end proc: seq(A211410(n),n=1..80) ; # R. J. Mathar, Feb 10 2013
-
Mathematica
Select[Range[600],PrimeOmega[#]==3&&PrimeOmega[#+2]<3&] (* Harvey P. Dale, Jul 15 2019 *)
-
PARI
issemi(n)=bigomega(n)==2 list(lim)=my(v=List(),pq); forprime(p=2,lim\4, forprime(q=2,min(lim\2\p,p), pq=p*q; forprime(r=2,min(lim\pq,q), if(isprime(pq*r+2) || issemi(pq*r+2), listput(v,pq*r))))); Set(v) \\ Charles R Greathouse IV, Aug 23 2017