A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0
Keywords
A334524 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + 5xy = 0.
1, 5, 9, 13, 17, 29, 33, 37, 41, 45, 65, 69, 73, 77, 81, 101, 105, 109, 113, 117, 153, 157, 161, 165, 169, 181, 185, 189, 193, 197, 233, 237, 241, 245, 249, 261, 273, 277, 281, 285, 321, 325, 329, 333, 337, 373, 377, 381, 385, 397, 417, 421, 425, 429, 433, 445
Offset: 0
Keywords
Comments
If n is squarefree and not divisible by 5, a(n) = a(n-1)+4. - Robert Israel, Jun 29 2020
Links
- Brandon Crofts, Table of n, a(n) for n = 0..20000 (first 10001 terms from Robert Israel)
- Brandon Crofts, Mathematica code for 334524
Crossrefs
Cf. A211423.
Programs
-
Maple
df:= proc(n) local t,s,m0,m; if n mod 5 = 0 then m:= n/5; t:= 4*nops(select(s -> s < n and s > m, numtheory:-divisors(5*m^2))) else t:= 0 fi; m0:= mul(`if`(s[1]=5, s[1]^ceil((s[2]-1)/2), s[1]^ceil(s[2]/2)),s=ifactors(n)[2]); t + 4 + 8*floor(n/m0/5); end proc: df(0):= 1: ListTools:-PartialSums(map(df,[$0..100])); # Robert Israel, Jun 29 2020
A334525 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + 7xy = 0.
1, 5, 9, 13, 17, 21, 25, 37, 41, 45, 49, 53, 57, 61, 81, 85, 89, 93, 97, 101, 105, 125, 129, 133, 137, 141, 145, 149, 185, 189, 193, 197, 201, 205, 209, 229, 233, 237, 241, 245, 249, 253, 297, 301, 305, 309, 313, 317, 321, 333, 337, 341, 345, 349, 353, 357, 393, 397
Offset: 0
Keywords
Comments
If n is squarefree and not divisible by 7, a(n) = a(n-1)+4. - Robert Israel, Jul 01 2020
Links
- Brandon Crofts, Table of n, a(n) for n = 0..20000
- Brandon Crofts, Mathematica code for A334525
Crossrefs
Cf. A211423.
Programs
-
Maple
df:= proc(n) local t, s, m0, m; if n mod 7 = 0 then m:= n/7; t:= 4*nops(select(s -> s < n and s > m, numtheory:-divisors(7*m^2))) else t:= 0 fi; m0:= mul(`if`(s[1]=7, s[1]^ceil((s[2]-1)/2), s[1]^ceil(s[2]/2)), s=ifactors(n)[2]); t + 4 + 8*floor(n/m0/7); end proc: df(0):= 1: ListTools:-PartialSums(map(df, [$0..100])); # Robert Israel, Jul 01 2020
A334526 Number of triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + 11xy = 0.
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 249, 253, 257, 261, 265, 269, 273, 277, 281, 285, 289, 309, 313, 317
Offset: 0
Links
- Brandon Crofts, Mathematica code for A334526
Crossrefs
Cf. A211423.
Comments
Examples
Links
Crossrefs
Programs
Mathematica