A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0
Keywords
A349538 The number of pseudo-Pythagorean triples (which allow negative or 0 sides) on a 2D lattice that are on or inside a circle of radius n.
1, 5, 9, 13, 17, 29, 33, 37, 41, 45, 57, 61, 65, 77, 81, 93, 97, 109, 113, 117, 129, 133, 137, 141, 145, 165, 177, 181, 185, 197, 209, 213, 217, 221, 233, 245, 249, 261, 265, 277, 289, 301, 305, 309, 313, 325, 329, 333, 337, 341, 361, 373, 385, 397, 401, 413, 417, 421, 433, 437, 449
Offset: 0
Keywords
Comments
Consider a 2D lattice, where the Cartesian coordinates x and y are legs of the Pythagorean triangle. Thus the notion of Pythagorean triple is extended to the cases when sides x, y are in Z (i.e., sides also include negative integers and zero). The sequence gives the number of such triples on or inside a circle of radius n.
Partial sums of A046109.
Examples
Sides (coordinates) a(n) ------------------------------------------------------------------------------ (0,0) 1 (-1,0)(0,-1)(0,1)(1,0) 5 (-2,0)(0,-2)(0,2)(2,0) 9 (-3,0)(0,-3)(0,3)(3,0) 13 (-4,0)(0,-4)(0,4)(4,0) 17 (-5,0)(-4,-3)(-4,3)(-3,-4)(-3,4)(0,-5)(0,5)(3,-4)(3,4)(4,-3)(4,3)(5,0) 29 (-6,0)(0,-6)(0,6)(6,0) 33 (-7,0)(0,-7)(0,7)(7,0) 37 (-8,0)(0,-8)(0,8)(8,0) 41 (-9,0)(0,-9)(0,9)(9,0) 45 (-10,0)(-8,-6)(-8,6)(-6,-8)(-6,8)(0,-10)(0,10)(6,-8)(6,8)(8,-6)(8,6)(10,0) 57 (-11,0)(0,-11)(0,11)(11,0) 61 (-12,0)(0,-12)(0,12)(12,0) 65
Links
- Alexander Kritov, Source code
Programs
-
C
/* See links */
-
PARI
f(n) = if(n==0, return(1)); my(f=factor(n)); 4*prod(i=1, #f~, if(f[i, 1]%4==1, 2*f[i, 2]+1, 1)); \\ A046109 a(n) = sum(k=0, n, f(k)); \\ Michel Marcus, Nov 27 2021
Comments
Examples
Links
Crossrefs
Programs
Mathematica