A211433 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w+2x+4y=0.
1, 1, 7, 11, 23, 27, 45, 53, 77, 85, 115, 127, 163, 175, 217, 233, 281, 297, 351, 371, 431, 451, 517, 541, 613, 637, 715, 743, 827, 855, 945, 977, 1073, 1105, 1207, 1243, 1351, 1387, 1501, 1541, 1661, 1701, 1827, 1871, 2003, 2047, 2185, 2233
Offset: 0
Links
- Pontus von Brömssen, Table of n, a(n) for n = 0..1024
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1).
Programs
-
Magma
a:=[]; for n in [0..50] do m:=0; for i, j in [-n..n] do if (i+2*j) mod 4 eq 0 then m:=m+1; end if; end for; Append(~a, m); end for; a; // Marius A. Burtea, Jan 19 2020
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1 + 5*x^2 + 4*x^3 + 5*x^4 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)))); // Marius A. Burtea, Jan 19 2020 -
Mathematica
t[n_] := t[n] = Flatten[Table[w + 2 x + 4 y, {w, -n, n}, {x, -n, n}, {y, -n, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}] (* A211433 *) (t - 1)/2 (* integers *)
Formula
Conjectures from Colin Barker, May 15 2017: (Start)
G.f.: (1 + 5*x^2 + 4*x^3 + 5*x^4 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7) for n>6.
(End)
Comments