cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211480 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w + 2x + 3y = 1.

Original entry on oeis.org

0, 3, 8, 16, 27, 40, 56, 75, 96, 120, 147, 176, 208, 243, 280, 320, 363, 408, 456, 507, 560, 616, 675, 736, 800, 867, 936, 1008, 1083, 1160, 1240, 1323, 1408, 1496, 1587, 1680, 1776, 1875, 1976, 2080, 2187, 2296, 2408, 2523, 2640, 2760, 2883
Offset: 0

Views

Author

Clark Kimberling, Apr 12 2012

Keywords

Comments

For a guide to related sequences, see A211422.
For n>2, this is the number of 1's in the partitions of 4n-4 into 4 parts. - Wesley Ivan Hurt, Mar 13 2014
List of triples: [4*k*(3*k-1), 4*k*(3*k+1), 3*(2*k+1)^2], respectively A014642, 8*A005449, 3*A016754. - Luce ETIENNE, May 31 2017
Conjecture: Number of partitions of 4n+2 into 3 parts. - George Beck, Mar 23 2023

Crossrefs

Programs

  • Maple
    f:= proc(n) local x,r,ymin,ymax;
      r:= 0:
      for x from -n to n do
        ymin:= max(-n, ceil((-n+1-2*x)/3));
        ymax:= min(n, floor((n+1-2*x)/3));
        if ymin <= ymax then r:= r + ymax-ymin+1 fi
      od;
      r
    end proc:
    map(f, [$0..50]); # Robert Israel, Jun 09 2023
  • Mathematica
    t[n_] := t[n] = Flatten[Table[w + 2 x + 3 y - 1, {w, -n, n}, {x, -n, n}, {y, -n, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}] (* A211480 *)
    b[0] := 0; b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2])/(4 n), {i, 0, 2 n}]; Table[b[n - 1] + 2 (n - 1), {n, 50}] (* Wesley Ivan Hurt, Mar 13 2014 *)

Formula

Conjectures from Colin Barker, May 15 2017: (Start)
G.f.: x^2*(3 + 2*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>=5.
(End)
Conjecture: a(n) = (8*floor(n/3)*(2*n-3*floor(n/3)-1)+3*(1-(-1)^(n+2-floor((n+2)/3))))/2 = floor((2*n-1)^2/3). - Luce ETIENNE, May 25 2017

Extensions

Offset corrected by Robert Israel, Jun 09 2023