A211545 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+x+y>0.
0, 4, 29, 99, 238, 470, 819, 1309, 1964, 2808, 3865, 5159, 6714, 8554, 10703, 13185, 16024, 19244, 22869, 26923, 31430, 36414, 41899, 47909, 54468, 61600, 69329, 77679, 86674, 96338, 106695, 117769, 129584, 142164, 155533, 169715, 184734, 200614, 217379
Offset: 0
Examples
a(1) counts these triples: (-1,1,1), (1,-1,1), (1,1,-1), (1,1,1).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A211422.
Programs
-
Mathematica
t = Compile[{{u, _Integer}}, Module[{s = 0}, (Do[If[w + x + y > 0, s = s + 1], {w, #}, {x, #}, {y, #}] &[ Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; Map[t[#] &, Range[0, 60]] (* A211545 *) FindLinearRecurrence[%] (* Peter J. C. Moses, Apr 13 2012 *) LinearRecurrence[{4,-6,4,-1},{0,4,29,99},36] (* Ray Chandler, Aug 02 2015 *)
-
PARI
concat(0, Vec(x*(4 + 13*x + 7*x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 04 2017
Formula
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
From Colin Barker, Dec 04 2017: (Start)
G.f.: x*(4 + 13*x + 7*x^2) / (1 - x)^4.
a(n) = (n*(3 - 3*n + 8*n^2))/2.
(End)
Comments