cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211618 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and 2w+x+y>1.

Original entry on oeis.org

0, 3, 24, 89, 218, 439, 772, 1245, 1878, 2699, 3728, 4993, 6514, 8319, 10428, 12869, 15662, 18835, 22408, 26409, 30858, 35783, 41204, 47149, 53638, 60699, 68352, 76625, 85538, 95119, 105388, 116373, 128094, 140579, 153848, 167929, 182842, 198615, 215268
Offset: 0

Views

Author

Clark Kimberling, Apr 16 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{u, _Integer}},
       Module[{s = 0}, (Do[If[2 w + x + y > 1,
             s = s + 1], {w, #}, {x, #}, {y, #}] &[
          Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];
    Map[t[#] &, Range[0, 70]]  (* A211618 *)
    FindLinearRecurrence[%]
    (* Peter J. C. Moses, Apr 13 2012 *)
    Join[{0},LinearRecurrence[{3, -2, -2, 3, -1},{3, 24, 89, 218, 439},35]] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    concat(0, Vec(x*(3 + 15*x + 23*x^2 + 5*x^3 + 2*x^4) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Dec 04 2017

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>5.
From Colin Barker, Dec 04 2017: (Start)
G.f.: x*(3 + 15*x + 23*x^2 + 5*x^3 + 2*x^4) / ((1 - x)^4*(1 + x)).
a(n) = 4*n^3 - 3*n^2 + 3*n - 2 for n>0 and even.
a(n) = 4*n^3 - 3*n^2 + 3*n - 1 for n odd.
(End)