cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.

Original entry on oeis.org

1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0

Views

Author

Clark Kimberling, Apr 10 2012

Keywords

Comments

Suppose that S={-n,...,0,...,n} and that f(w,x,y,n) is a function, where w,x,y are in S. The number of ordered triples (w,x,y) satisfying f(w,x,y,n)=0, regarded as a function of n, is a sequence t of nonnegative integers. Sequences such as t/4 may also be integer sequences for all except certain initial values of n. In the following guide, such sequences are indicated in the related sequences column and may be included in the corresponding Mathematica programs.
...
sequence... f(w,x,y,n) ..... related sequences
A211415 ... w^2+x*y-1 ...... t+2, t/4, (t/4-1)/4
A211422 ... w^2+x*y ........ (t-1)/8, A120486
A211423 ... w^2+2x*y ....... (t-1)/4
A211424 ... w^2+3x*y ....... (t-1)/4
A211425 ... w^2+4x*y ....... (t-1)/4
A211426 ... 2w^2+x*y ....... (t-1)/4
A211427 ... 3w^2+x*y ....... (t-1)/4
A211428 ... 2w^2+3x*y ...... (t-1)/4
A211429 ... w^3+x*y ........ (t-1)/4
A211430 ... w^2+x+y ........ (t-1)/2
A211431 ... w^3+(x+y)^2 .... (t-1)/2
A211432 ... w^2-x^2-y^2 .... (t-1)/8
A003215 ... w+x+y .......... (t-1)/2, A045943
A202253 ... w+2x+3y ........ (t-1)/2, A143978
A211433 ... w+2x+4y ........ (t-1)/2
A211434 ... w+2x+5y ........ (t-1)/4
A211435 ... w+4x+5y ........ (t-1)/2
A211436 ... 2w+3x+4y ....... (t-1)/2
A211435 ... 2w+3x+5y ....... (t-1)/2
A211438 ... w+2x+2y ....... (t-1)/2, A118277
A001844 ... w+x+2y ......... (t-1)/4, A000217
A211439 ... w+3x+3y ........ (t-1)/2
A211440 ... 2w+3x+3y ....... (t-1)/2
A028896 ... w+x+y-1 ........ t/6, A000217
A211441 ... w+x+y-2 ........ t/3, A028387
A182074 ... w^2+x*y-n ...... t/4, A028387
A000384 ... w+x+y-n
A000217 ... w+x+y-2n
A211437 ... w*x*y-n ........ t/4, A007425
A211480 ... w+2x+3y-1
A211481 ... w+2x+3y-n
A211482 ... w*x+w*y+x*y-w*x*y
A211483 ... (n+w)^2-x-y
A182112 ... (n+w)^2-x-y-w
...
For the following sequences, S={1,...,n}, rather than
{-n,...,0,...n}. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A132188 ... w^2-x*y
A211506 ... w^2-x*y-n
A211507 ... w^2-x*y+n
A211508 ... w^2+x*y-n
A211509 ... w^2+x*y-2n
A211510 ... w^2-x*y+2n
A211511 ... w^2-2x*y ....... t/2
A211512 ... w^2-3x*y ....... t/2
A211513 ... 2w^2-x*y ....... t/2
A211514 ... 3w^2-x*y ....... t/2
A211515 ... w^3-x*y
A211516 ... w^2-x-y
A211517 ... w^3-(x+y)^2
A063468 ... w^2-x^2-y^2 .... t/2
A000217 ... w+x-y
A001399 ... w-2x-3y
A211519 ... w-2x+3y
A008810 ... w+2x-3y
A001399 ... w-2x-3y
A008642 ... w-2x-4y
A211520 ... w-2x+4y
A211521 ... w+2x-4y
A000115 ... w-2x-5y
A211522 ... w-2x+5y
A211523 ... w+2x-5y
A211524 ... w-3x-5y
A211533 ... w-3x+5y
A211523 ... w+3x-5y
A211535 ... w-4x-5y
A211536 ... w-4x+5y
A008812 ... w+4x-5y
A055998 ... w+x+y-2n
A074148 ... 2w+x+y-2n
A211538 ... 2w+2x+y-2n
A211539 ... 2w+2x-y-2n
A211540 ... 2w-3x-4y
A211541 ... 2w-3x+4y
A211542 ... 2w+3x-4y
A211543 ... 2w-3x-5y
A211544 ... 2w-3x+5y
A008812 ... 2w+3x-5y
A008805 ... w-2x-2y (repeated triangular numbers)
A001318 ... w-2x+2y
A000982 ... w+x-2y
A211534 ... w-3x-3y
A211546 ... w-3x+3y (triply repeated triangular numbers)
A211547 ... 2w-3x-3y (triply repeated squares)
A082667 ... 2w-3x+3y
A055998 ... w-x-y+2
A001399 ... w-2x-3y+1
A108579 ... w-2x-3y+n
...
Next, S={-n,...-1,1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated inequality. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A211545 ... w+x+y>0; recurrence degree: 4
A211612 ... w+x+y>=0
A211613 ... w+x+y>1
A211614 ... w+x+y>2
A211615 ... |w+x+y|<=1
A211616 ... |w+x+y|<=2
A211617 ... 2w+x+y>0; recurrence degree: 5
A211618 ... 2w+x+y>1
A211619 ... 2w+x+y>2
A211620 ... |2w+x+y|<=1
A211621 ... w+2x+3y>0
A211622 ... w+2x+3y>1
A211623 ... |w+2x+3y|<=1
A211624 ... w+2x+2y>0; recurrence degree: 6
A211625 ... w+3x+3y>0; recurrence degree: 8
A211626 ... w+4x+4y>0; recurrence degree: 10
A211627 ... w+5x+5y>0; recurrence degree: 12
A211628 ... 3w+x+y>0; recurrence degree: 6
A211629 ... 4w+x+y>0; recurrence degree: 7
A211630 ... 5w+x+y>0; recurrence degree: 8
A211631 ... w^2>x^2+y^2; all terms divisible by 8
A211632 ... 2w^2>x^2+y^2; all terms divisible by 8
A211633 ... w^2>2x^2+2y^2; all terms divisible by 8
...
Next, S={1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated relation.
A211634 ... w^2<=x^2+y^2
A211635 ... w^2A211790
A211636 ... w^2>=x^2+y^2
A211637 ... w^2>x^2+y^2
A211638 ... w^2+x^2+y^2
A211639 ... w^2+x^2+y^2<=n
A211640 ... w^2+x^2+y^2>n
A211641 ... w^2+x^2+y^2>=n
A211642 ... w^2+x^2+y^2<2n
A211643 ... w^2+x^2+y^2<=2n
A211644 ... w^2+x^2+y^2>2n
A211645 ... w^2+x^2+y^2>=2n
A211646 ... w^2+x^2+y^2<3n
A211647 ... w^2+x^2+y^2<=3n
A063691 ... w^2+x^2+y^2=n
A211649 ... w^2+x^2+y^2=2n
A211648 ... w^2+x^2+y^2=3n
A211650 ... w^3A211790
A211651 ... w^3>x^3+y^3; see Comments at A211790
A211652 ... w^4A211790
A211653 ... w^4>x^4+y^4; see Comments at A211790

Examples

			a(1) counts these 9 triples: (-1,-1,1), (-1, 1,-1), (0, -1, 0), (0, 0, -1), (0,0,0), (0,0,1), (0,1,0), (1,-1,1), (1,1,-1).
		

Crossrefs

Cf. A120486.

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[w^2 + x*y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}] (* A211422 *)
    (t - 1)/8                   (* A120486 *)

A063691 Number of solutions to x^2 + y^2 + z^2 = n in positive integers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 0, 0, 3, 0, 3, 1, 0, 6, 0, 0, 3, 3, 3, 0, 6, 3, 0, 3, 0, 6, 4, 0, 6, 6, 0, 0, 6, 3, 6, 3, 0, 9, 0, 0, 9, 6, 3, 3, 6, 6, 0, 1, 6, 6, 6, 0, 6, 12, 0, 6, 6, 0, 9, 0, 6, 12, 0, 0, 6, 12, 3, 3, 12, 6, 0, 3, 3, 12, 7, 3, 12, 6, 0, 0, 12, 3, 9, 6, 0, 15, 0, 3, 15
Offset: 0

Author

Andrew A. Doroshev (andy(AT)ip.rsu.ru), Aug 23 2001

Keywords

Examples

			a(5)=0;
a(6)=3 because 1^2+1^2+2^2 = 1^2+2^2+1^2 = 2^2+1^2+1^2 = 6;
a(27)=4 because 1^2+1^2+5^2 = 1^2+5^2+1^2 = 3^2+3^2+3^2 = 5^2+1^2+1^2 = 27.
		

Crossrefs

Sequence without zeros: A014465.
Cf. A063725, A063730, A211639 (partial sums).
Column k=3 of A337165.

Programs

  • Mathematica
    r[n_] := Reduce[ x>0 && y>0 && z>0 && x^2 + y^2 + z^2 == n, {x, y, z}, Integers]; a[n_] := Which[rn = r[n]; rn === False, 0, Head[rn] === Or, Length[rn], True, 1]; Table[a[n], {n, 0, 89}](* Jean-François Alcover, May 10 2012 *)
    (EllipticTheta[3, 0, x] - 1)^3/8 + O[x]^100 // CoefficientList[#, x]& (* Jean-François Alcover, Jul 30 2017 *)

Formula

G.f.: (Sum_{m>=1} x^(m^2))^3.

A253663 Number of positive solutions to x^2+y^2+z^2 <= n^2.

Original entry on oeis.org

0, 0, 1, 7, 17, 38, 78, 127, 196, 296, 410, 564, 738, 958, 1220, 1514, 1848, 2235, 2686, 3175, 3719, 4365, 5007, 5758, 6568, 7442, 8415, 9477, 10597, 11779, 13100, 14459, 15954, 17566, 19231, 21029, 22916, 24930, 27030, 29293, 31616, 34103, 36732, 39459
Offset: 0

Author

R. J. Mathar, Jan 07 2015

Keywords

Comments

Whereas A000604 counts solutions where x>=0, y>=0, z>=0, this sequence counts solutions where x>0, y>0, z>0.

Examples

			a(4)=17 counts the following solutions (x,y,z): (1,1,1), (2,2,2), three permutations of (1,1,2), three permutations of (1,1,3), three permutations of (1,2,2), and six permutations of (1,2,3).
		

Crossrefs

Cf. A000604.

Programs

  • Sage
    [len([(x,y,z) for x in [1..n] for y in [1..n] for z in [1..n] if x^2+y^2+z^2<=n^2]) for n in [0..43]] # Tom Edgar, Jan 07 2015

Formula

a(n) = A211639(n^2).
a(n) = [x^(n^2)] (theta_3(x) - 1)^3/(8*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018
Comment from N. J. A. Sloane, Jun 02 2024 (Start)
The one-dimensional lattice {n: n an integer} , which graphically looks like
...o o o o o o ...
has theta series 1 + 2 q + 2 q^4 + 2 q^9 + 2 q^16 + ... = sum {n=-oo..oo} q^(n^2),
and that power series is called theta_3(q), A000122.
Raising it to the power 3 counts points with x^2+y^2+z^2 = k, A005875.
Dividing it by 1-x gives the partial sums, which basically is what this sequence is.
So a first approximation to a theta series for the sequence is theta_3(q)^8/(1-q).
Subtracting 1 and dividing by 8 is because here we only want positive solutions.
(End)

A211638 Number of ordered triples (w, x, y) with all terms in {1, ..., n} and w^2 + x^2 + y^2 < n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 4, 4, 4, 7, 7, 10, 11, 11, 17, 17, 17, 20, 23, 26, 26, 32, 35, 35, 38, 38, 44, 48, 48, 54, 60, 60, 60, 66, 69, 75, 78, 78, 87, 87, 87, 96, 102, 105, 108, 114, 120, 120, 121, 127, 133, 139, 139, 145, 157, 157, 163, 169, 169, 178, 178, 184
Offset: 0

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 < n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]     (* A211638 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
  • PARI
    first(n) = {n = max(n, 2); n-=2; my(res = vector(n), v = vector(n)); forvec(x = vector(3, i, [1,sqrtint(n)]), c = sum(i = 1, 3, x[i]^2); if(c <= n, v[c]++)); for(i = 2, #v, v[i]+=v[i-1]); concat([0,0],v)} \\ David A. Corneth, Jun 16 2023

Formula

a(n) + A063691(n) = A211639(n). - R. J. Mathar, Jun 16 2023
a(n) = A211639(n-1). - R. J. Mathar, Jun 16 2023

A211643 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2<=2n.

Original entry on oeis.org

0, 0, 1, 4, 4, 7, 11, 17, 17, 23, 26, 35, 38, 44, 48, 60, 60, 69, 78, 87, 87, 102, 108, 120, 121, 133, 139, 157, 163, 169, 178, 196, 196, 214, 220, 238, 241, 256, 266, 284, 284, 299, 314, 329, 332, 359, 365, 383, 386, 401, 410, 434, 440, 458, 471, 495
Offset: 0

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

Is A211643 a subsequence of A211639?
For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 <= 2 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]   (* A211643 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A372512 Number of solutions to x^2 + y^2 + z^2 <= n, where x, y, z are positive odd integers.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 11, 17, 17, 17, 17, 17, 17, 17, 17, 20, 20, 20, 20, 20, 20, 20, 20, 26, 26, 26, 26, 26, 26, 26, 26, 35, 35, 35, 35, 35, 35, 35, 35, 38, 38, 38, 38, 38, 38, 38, 38, 45, 45, 45, 45, 45, 45
Offset: 0

Author

Ilya Gutkovskiy, May 04 2024

Keywords

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[EllipticTheta[2, 0, x^4]^3/(8 (1 - x)), {x, 0, nmax}], x]
Showing 1-6 of 6 results.