A211775 a(n) = 2*n^2 - 212*n + 5419.
5419, 5209, 5003, 4801, 4603, 4409, 4219, 4033, 3851, 3673, 3499, 3329, 3163, 3001, 2843, 2689, 2539, 2393, 2251, 2113, 1979, 1849, 1723, 1601, 1483, 1369, 1259, 1153, 1051, 953, 859, 769, 683, 601, 523, 449, 379, 313, 251, 193, 139, 89, 43, 1, -37, -71, -101, -127
Offset: 0
References
- Joe L. Mott and Kermite Rose, Prime-Producing Cubic Polynomials in Lecture Notes in Pure and Applied Mathematics (Vol. 220), Marcel Dekker Inc., 2001, pages 281-317.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Joe L. Mott and Kermite Rose, Prime-Producing Cubic Polynomials.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[2*n^2-212*n+5419: n in [0..49]]; // Bruno Berselli, May 18 2012
-
Maple
A211775:=n->2*n^2 - 212*n + 5419: seq(A211775(n), n=0..100); # Wesley Ivan Hurt, Jan 20 2017
-
Mathematica
Table[2*n^2 - 212*n + 5419, {n, 0, 80}] (* Wesley Ivan Hurt, Aug 06 2017 *)
-
PARI
Vec((5419-11048*x+5633*x^2)/(1-x)^3+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
-
PARI
a(n) = 2*n^2 - 212*n + 5419 \\ Charles R Greathouse IV, Dec 19 2016
Formula
G.f.: (5419 - 11048*x + 5633*x^2)/(1-x)^3. - Bruno Berselli, May 18 2012
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(5419 - 210*x + 2*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
Edited by N. J. A. Sloane, Nov 12 2016
Comments