A211808
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y
1, 5, 1, 16, 5, 1, 36, 16, 5, 1, 69, 36, 16, 5, 1, 117, 69, 38, 16, 5, 1, 184, 119, 73, 38, 16, 5, 1, 272, 190, 123, 75, 38, 16, 5, 1, 385, 282, 194, 131, 75, 38, 16, 5, 1, 525, 399, 290, 204, 131, 75, 38, 16, 5, 1, 696, 547, 415, 300, 210, 131, 75, 38, 16, 5, 1
Offset: 1
Examples
Northwest corner: 1...5...16...36...69...117...184 1...5...16...36...69...119...190 1...5...16...38...73...123...194 1...5...16...38...75...131...204 1...5...16...38...75...131...210
Crossrefs
Cf. A211790.
Programs
-
Mathematica
z = 48; t[k_, n_] := Module[{s = 0}, (Do[If[2 w^k <= x^k + y^k, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; Table[t[1, n], {n, 1, z}] (* A055232 *) Table[t[2, n], {n, 1, z}] (* A211806 *) Table[t[3, n], {n, 1, z}] (* A211807 *) TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211808 *) Table[k (4 k^2 - 3 k + 5)/6, {k, 1, z}] (* row-limit sequence, A174723 *) (* Peter J. C. Moses, Apr 13 2012 *)
Comments