cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211857 Number of representations of n as a sum of products of distinct pairs of integers larger than 1, considered to be equivalent when terms or factors are reordered.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 2, 5, 1, 7, 3, 8, 5, 11, 4, 16, 9, 17, 12, 25, 13, 34, 20, 37, 28, 53, 32, 69, 46, 78, 63, 108, 71, 136, 100, 160, 134, 210, 152, 265, 211, 313, 268, 403, 316, 506, 421, 596, 528, 759, 629, 943, 814, 1111, 1016
Offset: 0

Views

Author

Alois P. Heinz, Apr 22 2012

Keywords

Examples

			a(0) = 1: 0 = the empty sum.
a(1) = a(2) = a(3) = 0: no product is < 4.
a(4) = 1: 4 = 2*2.
a(6) = 1: 6 = 2*3.
a(8) = 1: 8 = 2*4.
a(9) = 1: 9 = 3*3.
a(10) = 2: 10 = 2*2 + 2*3 = 2*5.
a(12) = 3: 12 = 2*2 + 2*4 = 2*6 = 3*4.
a(16) = 5: 16 = 2*2 + 2*6 = 2*2 + 3*4 = 2*3 + 2*5 = 2*8 = 4*4.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; local c;
          c:= ceil(tau(i)/2)-1;
          `if`(n=0, 1, `if`(i<2, 0, b(n, i-1)
           +add(b(n-i*j, i-1) *binomial(c, j), j=1..min(c, n/i))))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..70);
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{c}, c = Ceiling[DivisorSigma[0, i]/2]-1; If[n==0, 1, If[i<2, 0, b[n, i-1]+Sum[b[n-i*j, i-1]*Binomial[c, j], {j, 1, Min[c, n/i]}]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

G.f.: Product_{k>0} (1+x^k)^(A038548(k)-1). - Vaclav Kotesovec, Aug 19 2019
G.f.: Product_{i>=1} Product_{j=2..i} (1 + x^(i*j)). - Ilya Gutkovskiy, Sep 23 2019