A211857 Number of representations of n as a sum of products of distinct pairs of integers larger than 1, considered to be equivalent when terms or factors are reordered.
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 2, 5, 1, 7, 3, 8, 5, 11, 4, 16, 9, 17, 12, 25, 13, 34, 20, 37, 28, 53, 32, 69, 46, 78, 63, 108, 71, 136, 100, 160, 134, 210, 152, 265, 211, 313, 268, 403, 316, 506, 421, 596, 528, 759, 629, 943, 814, 1111, 1016
Offset: 0
Keywords
Examples
a(0) = 1: 0 = the empty sum. a(1) = a(2) = a(3) = 0: no product is < 4. a(4) = 1: 4 = 2*2. a(6) = 1: 6 = 2*3. a(8) = 1: 8 = 2*4. a(9) = 1: 9 = 3*3. a(10) = 2: 10 = 2*2 + 2*3 = 2*5. a(12) = 3: 12 = 2*2 + 2*4 = 2*6 = 3*4. a(16) = 5: 16 = 2*2 + 2*6 = 2*2 + 3*4 = 2*3 + 2*5 = 2*8 = 4*4.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; local c; c:= ceil(tau(i)/2)-1; `if`(n=0, 1, `if`(i<2, 0, b(n, i-1) +add(b(n-i*j, i-1) *binomial(c, j), j=1..min(c, n/i)))) end: a:= n-> b(n, n): seq(a(n), n=0..70);
-
Mathematica
b[n_, i_] := b[n, i] = Module[{c}, c = Ceiling[DivisorSigma[0, i]/2]-1; If[n==0, 1, If[i<2, 0, b[n, i-1]+Sum[b[n-i*j, i-1]*Binomial[c, j], {j, 1, Min[c, n/i]}]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
Formula
G.f.: Product_{k>0} (1+x^k)^(A038548(k)-1). - Vaclav Kotesovec, Aug 19 2019
G.f.: Product_{i>=1} Product_{j=2..i} (1 + x^(i*j)). - Ilya Gutkovskiy, Sep 23 2019