A211890 Triangle read by rows, where row n starts with n-th prime, followed by n primes in arithmetic progression; T(0,0) = 1 by convention.
1, 2, 3, 3, 5, 7, 5, 11, 17, 23, 7, 37, 67, 97, 127, 11, 71, 131, 191, 251, 311, 13, 244243, 488473, 732703, 976933, 1221163, 1465393, 17, 6947, 13877, 20807, 27737, 34667, 41597, 48527, 19, 546859, 1093699, 1640539, 2187379, 2734219, 3281059, 3827899
Offset: 0
Examples
First 9 rows of triangle: 0: 1 1: 2 3 2: 3 5 7 3: 5 11 17 23 4: 7 37 67 97 127 5: 11 71 131 191 251 311 6: 13 244243 488473 732703 976933 1221163 1465393 7: 17 6947 13877 20807 27737 34667 41597 48527 8: 19 546859 1093699 1640539 2187379 2734219 3281059 3827899 4374739
Links
- Chai Wah Wu, Rows n=0..10 of triangle, flattened (rows n = 0..9 from Reinhard Zumkeller)
- Eric Weisstein's World of Mathematics, Prime Arithmetic Progression.
- Wikipedia, Primes in arithmetic progression.
- Index entries for sequences related to primes in arithmetic progressions
Programs
-
Haskell
a211890 n k = a211890_tabl !! n !! k a211890_row n = a211890_tabl !! n a211890_tabl = zipWith3 (\p k row -> map ((+ p) . (* k)) row) a008578_list (0 : a211889_list) a002262_tabl
Comments