cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A132231 Primes congruent to 7 (mod 30).

Original entry on oeis.org

7, 37, 67, 97, 127, 157, 277, 307, 337, 367, 397, 457, 487, 547, 577, 607, 727, 757, 787, 877, 907, 937, 967, 997, 1087, 1117, 1237, 1297, 1327, 1447, 1567, 1597, 1627, 1657, 1747, 1777, 1867, 1987, 2017, 2137, 2287, 2347, 2377, 2437, 2467, 2557, 2617, 2647
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes ending in 7 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 07 2009
Intersection of A030432 and A002476. - Ray Chandler, Apr 07 2009
Only from 4927 on, there are more composite numbers than primes in {7+30k}, see A227869. - M. F. Hasler, Nov 02 2013
Terms are non-twin primes A007510, except for 7. - Jonathan Sondow, Oct 27 2017

Crossrefs

Programs

  • Haskell
    a132231 n = a132231_list !! (n-1)
    a132231_list = [x | k <- [0..], let x = 30 * k + 7, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Magma
    [p: p in PrimesUpTo(3000) | p mod 30 eq 7 ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[30*Range[0,100]+7,PrimeQ] (* Harvey P. Dale, Feb 01 2012 *)
    Select[Prime[Range[1000]],MemberQ[{7},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    forstep(p=7,1999,30,isprime(p)&&print1(p",")) \\ M. F. Hasler, Nov 02 2013

Formula

a(n) = A158573(n)*30 + 7. - Ray Chandler, Apr 07 2009
a(n) = A211890(4,n-1) for n <= 5. - Reinhard Zumkeller, Jul 13 2012

Extensions

Extended by Ray Chandler, Apr 07 2009

A214360 Primes congruent to 23 modulo 3120613860.

Original entry on oeis.org

23, 3120613883, 6241227743, 9361841603, 12482455463, 15603069323, 18723683183, 21844297043, 24964910903, 28085524763, 34326752483, 43688594063, 62412277223, 115462712843, 124824554423, 156030693023, 159151306883, 171633762323, 180995603903, 196598673203
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2012

Keywords

Comments

A211889(9) = 3120613860;
the first 10 terms constitute row 9 of triangle A211890, an arithmetic progression of 10 primes.

Crossrefs

Cf. A010051.
Sequences of numbers congruent 23 modulo m: A134517 m=24, A141945 m=25, A140375 m=26, A141963 m=27, A141974 m=28, A141999 m=29, A132235 m=30, A142027 m=31, A142044 m=32, A142062 m=33, A142091 m=35, A142107 m=36, A142132 m=37, A142173 m=39, A142192 m=40, A142220 m=41, A142244 m=42, A142272 m=43, A142302 m=44, A142324 m=45, A142374 m=47, A142405 m=48, A142433 m=49, A142490 m=51, A142518 m=52, A142553 m=53, A142617 m=55, A142650 m=56, A142679 m=57, A142750 m=59, A142790 m=60, A142821 m=61, A142902 m=63, A142935 m=64, A140844 m=210.

Programs

  • Haskell
    a214360 n = a214360_list !! (n-1)
    a214360_list = [x | k <- [0..], let x = 3120613860*k+23, a010051' x == 1]
    
  • Maple
    select(isprime,[seq(23+i*3120613860,i=0..1000)]); # Robert Israel, Jun 07 2015
  • Mathematica
    Select[Range[23, 2 10^11, 3120613860], PrimeQ] (* Vincenzo Librandi, Jun 07 2015 *)
  • PARI
    is(n)=isprime(n) && n%3120613860==23 \\ Charles R Greathouse IV, Jul 02 2016

Formula

a(n) ~ 658414080n log n. - Charles R Greathouse IV, Jul 02 2016

A117047 Primes of the form 60*n+11.

Original entry on oeis.org

11, 71, 131, 191, 251, 311, 431, 491, 911, 971, 1031, 1091, 1151, 1451, 1511, 1571, 1811, 1871, 1931, 2111, 2351, 2411, 2531, 2591, 2711, 3011, 3191, 3251, 3371, 3491, 3671, 3851, 3911, 4091, 4211, 4271, 4391, 4451, 4691, 4751, 4871, 4931, 5051, 5171
Offset: 1

Views

Author

Roger L. Bagula, Apr 17 2006

Keywords

Comments

a(n) = A211890(5,n-1) for n <= 6. - Reinhard Zumkeller, Jul 13 2012

Crossrefs

Programs

  • Haskell
    a117047 n = a117047_list !! (n-1)
    a117047_list = [x | k <- [0..], let x = 60 * k + 11, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
  • Mathematica
    Flatten[Table[If[PrimeQ[60*n + 11], 60*n + 11, {}], {n, 0, 100}]]
    Select[60Range[0,100]+11,PrimeQ] (* Harvey P. Dale, Feb 16 2024 *)

Extensions

Wrong formula removed by Reinhard Zumkeller, Jul 13 2012

A211889 Smallest positive d such that prime(n)+k*d is prime for 0 <= k <= n.

Original entry on oeis.org

1, 2, 6, 30, 60, 244230, 6930, 546840, 3120613860, 7399357350, 10719893274090, 173761834256010, 14772517344885300
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2012

Keywords

Comments

a(n) = A211890(n,k+1) - A211890(n,k), 0 <= k < n.

Crossrefs

Programs

  • Haskell
    a211889 n = head [k | let p = a000040 n, k <- [1..],
                all ((== 1) . a010051') $ map ((+ p) . (* k)) (a002260_row n)]
    
  • Python
    from sympy import isprime, prime, primorial, primepi
    def A211889(n):
        if n == 1:
            return 1
        delta = primorial(primepi(n))
        p, d = prime(n), delta
        while True:
            q = p
            for _ in range(n):
                q += d
                if not isprime(q):
                    break
            else:
                return d
            d += delta # Chai Wah Wu, Jun 28 2019

Formula

A010051(A000040(n) + k * a(n)) = 1, 0 <= k <= n.

Extensions

a(10) from Chai Wah Wu, Jun 29 2019
a(11)-a(13) from Giovanni Resta, Jun 30 2019
Showing 1-5 of 5 results.