cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A030432 Primes of form 10n+7.

Original entry on oeis.org

7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277, 307, 317, 337, 347, 367, 397, 457, 467, 487, 547, 557, 577, 587, 607, 617, 647, 677, 727, 757, 787, 797, 827, 857, 877, 887, 907, 937, 947, 967, 977, 997, 1087, 1097, 1117, 1187, 1217, 1237
Offset: 1

Views

Author

Keywords

Comments

Union of A132231 and A039949. - Ray Chandler, Apr 07 2009
5 is not quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Also primes of the form 5n+2 with positive n. - Danny Rorabaugh, Feb 20 2016
Intersection of A000040 and A017353. - Iain Fox, Dec 30 2017

Crossrefs

Cf. A030430 (10n+1), A030431 (10n+3), A030433 (10n+9).

Programs

  • Magma
    [n: n in [7..1240 by 10] | IsPrime(n)]; // Bruno Berselli, Apr 06 2011
    
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 7 &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    is(n)=n%10==7 && isprime(n) \\ Charles R Greathouse IV, Jul 01 2013
    
  • PARI
    lista(nn) = forprime(p=7, nn, if(p%10==7, print1(p, ", "))) \\ Iain Fox, Dec 30 2017
    
  • Sage
    [10*n+7 for n in range(124) if is_prime(10*n+7)] # Danny Rorabaugh, Feb 20 2016

Formula

a(n) = 10*A102342(n) + 7.
a(n) ~ 4n log n. - Charles R Greathouse IV, Jul 01 2013

Extensions

Extended by Ray Chandler, Nov 07 2006

A132230 Primes congruent to 1 (mod 30).

Original entry on oeis.org

31, 61, 151, 181, 211, 241, 271, 331, 421, 541, 571, 601, 631, 661, 691, 751, 811, 991, 1021, 1051, 1171, 1201, 1231, 1291, 1321, 1381, 1471, 1531, 1621, 1741, 1801, 1831, 1861, 1951, 2011, 2131, 2161, 2221, 2251, 2281, 2311, 2341, 2371, 2521, 2551, 2671
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Also primes congruent to 1 (mod 15). - N. J. A. Sloane, Jul 11 2008
Primes ending in 1 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 04 2009

Examples

			From _Muniru A Asiru_, Nov 01 2017: (Start)
31 is a prime and 31 = 30*1 + 1;
61 is a prime and 61 = 30*2 + 1;
151 is a prime and 151 = 30*5 + 1;
211 is a prime and 211 = 30*7 + 1;
241 is a prime and 241 = 30*8 + 1;
271 is a prime and 271 = 30*9 + 1.
(End)
		

Crossrefs

Programs

Formula

a(n) = A111175(n)*30 + 1. - Ray Chandler, Apr 07 2009
Intersection of A030430 and A002476. - Ray Chandler, Apr 07 2009

Extensions

Edited by Ray Chandler, Apr 07 2009

A132232 Primes congruent to 11 (mod 30).

Original entry on oeis.org

11, 41, 71, 101, 131, 191, 251, 281, 311, 401, 431, 461, 491, 521, 641, 701, 761, 821, 881, 911, 941, 971, 1031, 1061, 1091, 1151, 1181, 1301, 1361, 1451, 1481, 1511, 1571, 1601, 1721, 1811, 1871, 1901, 1931, 2081, 2111, 2141, 2351, 2381, 2411, 2441, 2531
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Crossrefs

Programs

Formula

From Ray Chandler, Apr 07 2009: (Start)
a(n) = A158614(n)*30 + 11.
Intersection of A030430 and A007528. (End)

Extensions

Extended by Ray Chandler, Apr 07 2009

A132235 Primes congruent to 23 (mod 30).

Original entry on oeis.org

23, 53, 83, 113, 173, 233, 263, 293, 353, 383, 443, 503, 563, 593, 653, 683, 743, 773, 863, 953, 983, 1013, 1103, 1163, 1193, 1223, 1283, 1373, 1433, 1493, 1523, 1553, 1583, 1613, 1733, 1823, 1913, 1973, 2003, 2063, 2153, 2213, 2243, 2273, 2333, 2393
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes (excluding 3) ending in 3 with (SOD-1)/3 non-integer where SOD is sum of digits. - Ki Punches
The sequence is infinite by Dirichlet's theorem. - Arkadiusz Wesolowski, Apr 02 2014
Terms are non-twin primes A007510. - Omar E. Pol, Jul 25 2019

Crossrefs

Programs

Formula

a(n) = A158791(n)*30 + 23. - Ray Chandler, Apr 07 2009
Intersection of A030431 and A007528. - Ray Chandler, Apr 07 2009

Extensions

Extended by Ray Chandler, Apr 07 2009

A158573 Numbers k such that 30*k + 7 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 24, 25, 26, 29, 30, 31, 32, 33, 36, 37, 41, 43, 44, 48, 52, 53, 54, 55, 58, 59, 62, 66, 67, 71, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 92, 93, 95, 96, 97, 101, 102, 106, 107, 110, 115, 117, 118, 120, 121, 123, 124, 128
Offset: 1

Views

Author

Ki Punches, Mar 21 2009

Keywords

Comments

Encoded primes with LSD 7 and (SOD-1)/3 integer, (LSD, least significant digit; SOD, sum of digits). Divide any such number by 30, if the whole number portion of the quotient is in the sequence, the number is prime.

Examples

			Example: 3877, with LSD 7 and (SOD-1)/3 = 23 (integer); Then 3877/30 = 129.233, or 129, which is in the sequence, and thus 3877 is prime.
		

Crossrefs

Programs

Formula

a(n) = (A132231(n) - 7)/30 = floor(A132231(n)/30). - Ray Chandler, Apr 07 2009
a(n) ~ (4/15) n log n. - Charles R Greathouse IV, Mar 07 2016

Extensions

Edited by Ray Chandler, Apr 07 2009

A211890 Triangle read by rows, where row n starts with n-th prime, followed by n primes in arithmetic progression; T(0,0) = 1 by convention.

Original entry on oeis.org

1, 2, 3, 3, 5, 7, 5, 11, 17, 23, 7, 37, 67, 97, 127, 11, 71, 131, 191, 251, 311, 13, 244243, 488473, 732703, 976933, 1221163, 1465393, 17, 6947, 13877, 20807, 27737, 34667, 41597, 48527, 19, 546859, 1093699, 1640539, 2187379, 2734219, 3281059, 3827899
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 13 2012

Keywords

Comments

T(n,0) = A000040(n) and T(n,k+1) - T(n,k) = A211889(n), 0 <= k < n.

Examples

			First 9 rows of triangle:
0:  1
1:  2 3
2:  3 5 7
3:  5 11 17 23
4:  7 37 67 97 127
5:  11 71 131 191 251 311
6:  13 244243 488473 732703 976933 1221163 1465393
7:  17 6947 13877 20807 27737 34667 41597 48527
8:  19 546859 1093699 1640539 2187379 2734219 3281059 3827899 4374739
		

Crossrefs

Programs

  • Haskell
    a211890 n k = a211890_tabl !! n !! k
    a211890_row n = a211890_tabl !! n
    a211890_tabl = zipWith3 (\p k row -> map ((+ p) . (* k)) row)
                            a008578_list (0 : a211889_list) a002262_tabl

A117047 Primes of the form 60*n+11.

Original entry on oeis.org

11, 71, 131, 191, 251, 311, 431, 491, 911, 971, 1031, 1091, 1151, 1451, 1511, 1571, 1811, 1871, 1931, 2111, 2351, 2411, 2531, 2591, 2711, 3011, 3191, 3251, 3371, 3491, 3671, 3851, 3911, 4091, 4211, 4271, 4391, 4451, 4691, 4751, 4871, 4931, 5051, 5171
Offset: 1

Views

Author

Roger L. Bagula, Apr 17 2006

Keywords

Comments

a(n) = A211890(5,n-1) for n <= 6. - Reinhard Zumkeller, Jul 13 2012

Crossrefs

Programs

  • Haskell
    a117047 n = a117047_list !! (n-1)
    a117047_list = [x | k <- [0..], let x = 60 * k + 11, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
  • Mathematica
    Flatten[Table[If[PrimeQ[60*n + 11], 60*n + 11, {}], {n, 0, 100}]]
    Select[60Range[0,100]+11,PrimeQ] (* Harvey P. Dale, Feb 16 2024 *)

Extensions

Wrong formula removed by Reinhard Zumkeller, Jul 13 2012

A132237 Primes congruent to {7, 23} mod 30.

Original entry on oeis.org

7, 23, 37, 53, 67, 83, 97, 113, 127, 157, 173, 233, 263, 277, 293, 307, 337, 353, 367, 383, 397, 443, 457, 487, 503, 547, 563, 577, 593, 607, 653, 683, 727, 743, 757, 773, 787, 863, 877, 907, 937, 953, 967, 983, 997, 1013, 1087, 1103
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Up to 4913, there are more primes of this form than composites. See also A132231 and A227869 (congruent to 7 only). - M. F. Hasler, Nov 02 2013

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 30 in [7, 23] ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{7,23},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    is_A132237(n)=setsearch([7,23],n%30)&&isprime(n) \\ - M. F. Hasler, Nov 02 2013

A271114 Expansion of (1+x)*(2+x)/(1-x)^2.

Original entry on oeis.org

2, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325
Offset: 0

Views

Author

Colin Barker, Mar 31 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{2}, LinearRecurrence[{2, -1}, {7, 13}, 100]] (* G. C. Greubel, Mar 31 2016 *)
  • PARI
    Vec((1+x)*(2+x)/(1-x)^2 + O(x^70))

Formula

G.f.: (1+x)*(2+x)/(1-x)^2.
a(n) = A270700(n)/6.
a(n) = 6*n+1 = A016921(n) for n>0.
a(n) = 2*a(n-1)-a(n-2) for n>2.
E.g.f.: 1 + (1+6*x)*exp(x). - G. C. Greubel, Mar 31 2016
From Bruno Berselli and G. C. Greubel, Mar 31 2016: (Start)
a(5*m+1) = 30*m + 7 = A132231(m+1).
a(5*m+2) = 30*m + 13 = A082369(m+1).
a(5*m+3) = 30*m + 19 = A156376(m).
a(5*m+4) = 30*m + 25 = 5*A016969(m).
a(5*m+5) = 30*m + 31 = A128470(m+1). (End)
a(n) = A100764(n+3) for n >= 1. - Georg Fischer, Oct 30 2018
Showing 1-10 of 14 results. Next