cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A030430 Primes of the form 10*n+1.

Original entry on oeis.org

11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 401, 421, 431, 461, 491, 521, 541, 571, 601, 631, 641, 661, 691, 701, 751, 761, 811, 821, 881, 911, 941, 971, 991, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291
Offset: 1

Views

Author

Keywords

Comments

Also primes of form 5*n+1 or equivalently 5*n+6.
Primes p such that the arithmetic mean of divisors of p^4 is an integer: A000203(p^4)/A000005(p^4) = C. - Ctibor O. Zizka, Sep 15 2008
Being a subset of A141158, this is also a subset of the primes of form x^2-5*y^2. - Tito Piezas III, Dec 28 2008
5 is quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Primes p such that 5 divides sigma(p^4), cf. A274397. - M. F. Hasler, Jul 10 2016

Crossrefs

Cf. A024912, A045453, A049511, A081759, A017281, A010051, A004615 (multiplicative closure).
Cf. A001583 (subsequence).
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009

Programs

  • Haskell
    a030430 n = a030430_list !! (n-1)
    a030430_list = filter ((== 1) . a010051) a017281_list
    -- Reinhard Zumkeller, Apr 16 2012
    
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 1 &] (* Ray Chandler, Dec 06 2006 *)
    Select[Range[11,1291,10],PrimeQ] (*Zak Seidov, Aug 14 2011*)
  • PARI
    is(n)=n%10==1 && isprime(n) \\ Charles R Greathouse IV, Sep 06 2012
    
  • PARI
    lista(nn) = forprime(p=11, nn, if(p%10==1, print1(p, ", "))) \\ Iain Fox, Dec 30 2017

Formula

a(n) = 10*A024912(n)+1 = 5*A081759(n)+6.
A104146(floor(a(n)/10)) = 1.
Union of A132230 and A132232. - Ray Chandler, Apr 07 2009
a(n) ~ 4n log n. - Charles R Greathouse IV, Sep 06 2012
Intersection of A000040 and A017281. - Iain Fox, Dec 30 2017

A132235 Primes congruent to 23 (mod 30).

Original entry on oeis.org

23, 53, 83, 113, 173, 233, 263, 293, 353, 383, 443, 503, 563, 593, 653, 683, 743, 773, 863, 953, 983, 1013, 1103, 1163, 1193, 1223, 1283, 1373, 1433, 1493, 1523, 1553, 1583, 1613, 1733, 1823, 1913, 1973, 2003, 2063, 2153, 2213, 2243, 2273, 2333, 2393
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes (excluding 3) ending in 3 with (SOD-1)/3 non-integer where SOD is sum of digits. - Ki Punches
The sequence is infinite by Dirichlet's theorem. - Arkadiusz Wesolowski, Apr 02 2014
Terms are non-twin primes A007510. - Omar E. Pol, Jul 25 2019

Crossrefs

Programs

Formula

a(n) = A158791(n)*30 + 23. - Ray Chandler, Apr 07 2009
Intersection of A030431 and A007528. - Ray Chandler, Apr 07 2009

Extensions

Extended by Ray Chandler, Apr 07 2009

A158614 Numbers n such that 30*n + 11 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 15, 16, 17, 21, 23, 25, 27, 29, 30, 31, 32, 34, 35, 36, 38, 39, 43, 45, 48, 49, 50, 52, 53, 57, 60, 62, 63, 64, 69, 70, 71, 78, 79, 80, 81, 84, 86, 87, 90, 91, 93, 95, 100, 101, 106, 107, 108, 112, 115, 116, 119, 122, 123, 125, 127, 128
Offset: 1

Views

Author

Ki Punches, Mar 22 2009, Mar 29 2009

Keywords

Comments

Encoded primes with LSD 1 and (SOD-1)/3 non-integer, (LSD, least significant digit; SOD, sum of digits). Divide any such number by 30, if the whole number portion of the quotient is in the sequence, the number is prime.

Examples

			Example: 3191, with LSD 1 and (SOD-1)/3 = 4.33 (non-integer); Then 3191/30=106.367, or 106 which is in the sequence, thus 3191 is prime.
		

Crossrefs

Programs

Formula

a(n) = (A132232(n) - 11)/30 = floor(A132232(n)/30). - Ray Chandler, Apr 07 2009

Extensions

Edited by Ray Chandler, Apr 07 2009

A132247 Twin primes congruent to {1, 11, 13, 17, 19, 29} mod 30.

Original entry on oeis.org

11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, 109, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 239, 241, 269, 271, 281, 283, 311, 313, 347, 349, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 617, 619, 641, 643
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2007

Keywords

Comments

Twin primes that are greater than 7. - Omar E. Pol, Oct 31 2013

Crossrefs

Formula

a(n) = A001097(n+3). - Michel Marcus, Nov 03 2013

A282321 Lesser of twin primes congruent to 11 (mod 30).

Original entry on oeis.org

11, 41, 71, 101, 191, 281, 311, 431, 461, 521, 641, 821, 881, 1031, 1061, 1091, 1151, 1301, 1451, 1481, 1721, 1871, 1931, 2081, 2111, 2141, 2381, 2591, 2711, 2801, 3251, 3371, 3461, 3581, 3671, 3821, 3851, 4001, 4091, 4241, 4271, 4421, 4481, 4721, 4931, 5021
Offset: 1

Views

Author

Martin Renner, Feb 11 2017

Keywords

Comments

The union of [this sequence and A282322] is A132241.
The union of [{3, 5}, this sequence, A282323 and A060229] is the lesser of twin primes sequence A001359.
The union of [{3, 5, 7}, A282321 to A282326] is the twin primes sequence A001097.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | IsPrime(p+2) and p mod 30 eq 11 ]; // Vincenzo Librandi, Feb 12 2017
    
  • Maple
    a:={}:
    for i from 1 to 1229 do
      if isprime(ithprime(i)+2) and ithprime(i) mod 30 = 11 then
        a:={op(a),ithprime(i)}:
      fi:
    od:
    a;
  • PARI
    list(lim)=my(v=List(), p=2); forprime(q=3, lim+2, if(q-p==2 && q%30==13, listput(v, p)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017

A140378 Lengths of runs of consecutive primes and nonprimes in A007775.

Original entry on oeis.org

1, 12, 1, 6, 1, 3, 1, 6, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 4, 2, 1, 2, 6, 1, 1, 1, 1, 1, 6, 2, 1, 2, 4, 3, 2, 2, 4, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 1, 2, 2, 3, 2, 2, 4, 2, 2, 1, 1, 4, 2, 1, 1, 4, 1, 3, 2, 1, 1, 3, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 13 2008

Keywords

Comments

Primes can be classified according to their remainder modulo 30: remainder 1 (A136066), 7 (A132231), 11 (A132232), 13 (A132233), 17 (A039949), 19 (A132234), 23 (A132235), or 29 (A132236). In the sequence A007775 of all numbers (prime or nonprime) in any of these remainder classes, we look for runs of numbers that are successively prime or nonprime and place the lengths of these runs in this sequence.

Examples

			Groups of runs in A007775 are (1), (7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47), (49), (53, 59, 61, 67, 71, 73), (77), (79, 83,...), which is 1 nonprime followed by 12 primes followed by 1 nonprime followed by 6 primes etc.
		

Crossrefs

Programs

  • Maple
    A007775 := proc(n) option remember ; local a; if n = 1 then 1; else for a from A007775(n-1)+1 do if a mod 2 <>0 and a mod 3 <>0 and a mod 5 <> 0 then RETURN(a) ; fi ; od: fi ; end: A := proc() local al,isp,n; al := 0: isp := false ; n := 1: while n< 300 do a := A007775(n) ; if isprime(a) <> isp then printf("%d,",al) ; al := 1; isp := not isp ; else al := al+1 ; fi ; n := n+1: od: end: A() ; # R. J. Mathar, Jun 16 2008

Extensions

Edited by R. J. Mathar, Jun 16 2008

A339463 Primes p such that (p-1)/gpf(p-1) = 2^q * 5^r with q, r >= 1, where gpf(m) is the greatest prime factor of m, A006530.

Original entry on oeis.org

71, 101, 131, 191, 251, 281, 311, 401, 431, 461, 521, 701, 761, 821, 881, 941, 971, 1031, 1061, 1091, 1151, 1181, 1301, 1361, 1451, 1481, 1511, 1571, 1601, 1721, 1811, 1901, 1931, 2081, 2111, 2141, 2351, 2411, 2441, 2621, 2711, 2741, 2801, 3041, 3251, 3371
Offset: 1

Views

Author

Bernard Schott, Dec 13 2020

Keywords

Comments

These primes that are all congruent to 11 (mod 30) form a subsequence of A132232. The first terms of A132232 that are not terms here are 11, 41, 491, ... (see examples)

Examples

			41 is prime, 40/5 = 8 = 2^3, hence 41 is not a term.
101 is prime, 100/5 = 20 = 2^2 * 5, hence 101 is a term.
491 is prime, 490/7 = 70 = 2 * 5 * 7, hence 491 is not a term.
521 is prime, 520/13 = 40 = 2^3 * 5, hence 521 is a term.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.

Crossrefs

Cf. A006093 (prime(n)-1), A006530, A052126, A339464.
Cf. A074781 (ratio=2^k), A339465 (ratio=2^q*3^r).
Subsequence of A132232 and of A339466.

Programs

  • Maple
    alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
    is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2, 5}:
    select(is_a, [$5..3371]); # Peter Luschny, Dec 13 2020
  • Mathematica
    q[n_] := Divisible[n, 10] && ((PrimeQ[(r = n/2^IntegerExponent[n, 2]/5^(e = IntegerExponent[n, 5]))] && r > 5) || (r == 1 && e > 1)); Select[Range[3500], PrimeQ[#] && q[# - 1] &] (* Amiram Eldar, Dec 13 2020 *)

A351597 Primes p such that the 6 consecutive primes starting with p are congruent to 11, 13, 17, 19, 23, 29 (modulo 30) in this order.

Original entry on oeis.org

11, 1481, 27701, 165701, 317921, 326141, 397751, 558791, 585911, 661091, 716411, 739391, 959831, 1015361, 1022501, 1068701, 1156031, 1161401, 1246361, 1265861, 1461401, 1514321, 1917731, 1940711, 2183921, 2188871, 2296871, 2725781, 2896931, 3058871, 3075341
Offset: 1

Views

Author

Zak Seidov, May 02 2022

Keywords

Comments

All terms are congruent to 11 (modulo 30) by definition.

Examples

			The six consecutive primes starting with 1481: 1481, 1483, 1487, 1489, 1493, 1499 are congruent to 11, 13, 17, 19, 23, 29 (modulo 30) in this order.
		

Crossrefs

Subsequence of A132232.

Programs

  • Mathematica
    Select[Partition[Prime[Range[222000]], 6, 1], Mod[#, 30] == {11, 13, 17, 19, 23, 29} &][[;; , 1]] (* Amiram Eldar, May 03 2022 *)

A140387 Binary encoding of the location of primes in integer sets r+30*n with remainder r=1,7,11,..,29.

Original entry on oeis.org

1, 32, 16, 129, 73, 36, 194, 6, 42, 176, 225, 12, 21, 89, 18, 97, 25, 243, 44, 44, 196, 34, 166, 90, 149, 152, 109, 66, 135, 225, 89, 169, 169, 28, 82, 210, 33, 213, 179, 170, 38, 92, 15, 96, 252, 171, 94, 7, 209, 2, 187, 22, 153, 9, 236, 197, 71, 179, 212, 197, 186
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 10 2008

Keywords

Comments

Classify all integers 30n+r with r= 1, 7, 11, 13, 17, 19, 23 or 29 as nonprime or prime and assign bit positions 0=LSB, 1, 2, 3, .., 7=MSB to the 8 remainders in the same order. Raise the bit if 30n+r is nonprime, erase it if 30n+r is prime.
The sequence interprets this as a number in base 2 and shows the decimal representation.

Examples

			For n=1, the 8 numbers 31 (r=1), 37 (r=7), 41 (r=11), 43 (r=17), 47 (r=17), 49 (r=19), 53 (r=23) and 59 (r=29) are prime, prime, prime, prime, prime, nonprime, prime, prime, prime, which is rendered into the binary 000100000 = 2^5=32=a(1).
		

Crossrefs

Cf. A105052 (analog in base 10, prime = bit 1, remainder 1 = MSB), A140891 (analog in base 14, prime = bit 0, remainder 1 = LSB).

Extensions

Edited by R. J. Mathar, Jun 17 2008

A229947 Primes congruent to {1, 11, 13, 17, 19, 29} mod 30.

Original entry on oeis.org

11, 13, 17, 19, 29, 31, 41, 43, 47, 59, 61, 71, 73, 79, 89, 101, 103, 107, 109, 131, 137, 139, 149, 151, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 257, 269, 271, 281, 283, 311, 313, 317, 331, 347, 349, 359, 373, 379, 389
Offset: 1

Views

Author

Omar E. Pol, Oct 27 2013

Keywords

Comments

For twin primes congruent to {1, 11, 13, 17, 19, 29} mod 30 see A132247.
Complement of A132237, primes congruent to 7 or 23 (mod 30), in the set of primes > 5. - M. F. Hasler, Nov 02 2013

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500) | p mod 30 in {1,11,13,17, 19,29} ]; // Vincenzo Librandi, Apr 05 2015
  • Mathematica
    Select[Flatten[Table[30n + {1, 11, 13, 17, 19, 29}, {n, 0, 11}]], PrimeQ] (* Alonso del Arte, Nov 01 2013 *)
    Select[Prime@Range[100], MemberQ[{1, 11, 13, 17, 19, 29}, Mod[#, 30]] &] (* Vincenzo Librandi, Apr 05 2015 *)
  • PARI
    is(n)=isprime(n) && setsearch([1,11,13,17,19,29], n%30) \\ Charles R Greathouse IV, Mar 08 2015
    

Formula

a(n) ~ 4/3 n log n. - Charles R Greathouse IV, Mar 08 2015
Showing 1-10 of 13 results. Next