cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A030431 Primes of form 10n+3.

Original entry on oeis.org

3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313, 353, 373, 383, 433, 443, 463, 503, 523, 563, 593, 613, 643, 653, 673, 683, 733, 743, 773, 823, 853, 863, 883, 953, 983, 1013, 1033, 1063, 1093, 1103, 1123, 1153, 1163, 1193
Offset: 1

Views

Author

Keywords

Comments

Also primes of form 5n+3.
Union of A132233, A132235, {3}. - Ray Chandler, Apr 07 2009
Primes p such that arithmetic mean of divisors of p^4 is an integer. There are 2 such sequences of primes, this one and A030430. - Ctibor O. Zizka, Oct 20 2009
5 is not quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Intersection of A000040 and A017305. - Iain Fox, Dec 30 2017

Crossrefs

Programs

Formula

a(n) = 10*A102338(n) + 3.

Extensions

Extended by Ray Chandler, Nov 07 2006

A132236 Primes congruent to 29 (mod 30).

Original entry on oeis.org

29, 59, 89, 149, 179, 239, 269, 359, 389, 419, 449, 479, 509, 569, 599, 659, 719, 809, 839, 929, 1019, 1049, 1109, 1229, 1259, 1289, 1319, 1409, 1439, 1499, 1559, 1619, 1709, 1889, 1949, 1979, 2039, 2069, 2099, 2129, 2309, 2339, 2399, 2459, 2549, 2579
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes ending in 9 with (SOD-1)/3 non-integer where SOD is sum of digits. - Ki Punches

Crossrefs

Programs

Formula

a(n) = A158850(n)*30 + 29. - Chandler
Intersection of A030433 and A007528. - Chandler

Extensions

Extended by Ray Chandler, Apr 07 2009

A132232 Primes congruent to 11 (mod 30).

Original entry on oeis.org

11, 41, 71, 101, 131, 191, 251, 281, 311, 401, 431, 461, 491, 521, 641, 701, 761, 821, 881, 911, 941, 971, 1031, 1061, 1091, 1151, 1181, 1301, 1361, 1451, 1481, 1511, 1571, 1601, 1721, 1811, 1871, 1901, 1931, 2081, 2111, 2141, 2351, 2381, 2411, 2441, 2531
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Crossrefs

Programs

Formula

From Ray Chandler, Apr 07 2009: (Start)
a(n) = A158614(n)*30 + 11.
Intersection of A030430 and A007528. (End)

Extensions

Extended by Ray Chandler, Apr 07 2009

A106859 Primes of the form 2x^2 + xy + 2y^2.

Original entry on oeis.org

2, 3, 5, 17, 23, 47, 53, 83, 107, 113, 137, 167, 173, 197, 227, 233, 257, 263, 293, 317, 347, 353, 383, 443, 467, 503, 557, 563, 587, 593, 617, 647, 653, 677, 683, 743, 773, 797, 827, 857, 863, 887, 947, 953, 977, 983, 1013, 1097, 1103, 1163, 1187, 1193
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-15.
If p is a prime >= 17 in this sequence then k==0 (mod 4) for all k satisfying "B(2k)(p^k-1) is an integer" where B are the Bernoulli numbers. - Benoit Cloitre, Nov 14 2005
Equals {2, 3, 5 and primes congruent to 17, 23 (mod 30)}; see A039949 and A132235. Except for 2, the same as primes of the form 3x^2 + 5y^2, which has discriminant -60. - T. D. Noe, May 02 2008
Equals {3, 5 and primes congruent to 2, 8 (mod 15)} sorted; see A033212. This form is in the only non-principal class (respectively, genus) for fundamental discriminant -15. - Rick L. Shepherd, Jul 25 2014 [See A343241 for the 2, 8 (mod 15) primes.]
From Wolfdieter Lang, Jun 08 2021: (Start)
Regarding the above comment of T. D. Noe on the form [3, 0, 5]: the class number h(-60) = 2 = A000003(15), and [1, 0, 15] is the principal reduced form, representing the primes given in A033212.
The form [3, 0, 5] represents the proper equivalence class of the second genus of forms of discriminant Disc = -60. The Legendre symbol for the odd primes, not 3 or 5, satisfy L(-3|p) = -1 and L(5|p) = -1, leading to primes p == {17, 23, 47, 53} (mod 60). See the Buell reference, p. 52, for the two characters L(p|3) and L(p|5). The prime 2 is represented by the imprimitive reduced form [2, 2, 8] of Disc = -60. (End)

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 51-52.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[2, 1, 2, 100000] (* see A106856 *)
  • PARI
    { fc(a,b,c,M) = my(p,t1,t2,n); t1 = listcreate();
    for(n=1,M, p = prime(n);
    t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, listput(t1,p)));
    print(t1);
    }
    fc(2,1,2,1000); \\ N. J. A. Sloane, Jun 06 2014

Extensions

Removed defective Mma program and extended the b-file using the PARI program fc. - N. J. A. Sloane, Jun 06 2014

A158791 Numbers n such that 30*n + 23 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 24, 25, 28, 31, 32, 33, 36, 38, 39, 40, 42, 45, 47, 49, 50, 51, 52, 53, 57, 60, 63, 65, 66, 68, 71, 73, 74, 75, 77, 79, 80, 84, 87, 88, 89, 91, 94, 96, 98, 100, 102, 106, 110, 113, 117, 119, 120, 126, 127, 128, 130, 133
Offset: 1

Views

Author

Ki Punches, Mar 26 2009

Keywords

Comments

Encoded primes with LSD 3 and (SOD-1)/3 non-integer, (LSD, least significant digit; SOD, sum of digits). Divide any such number by 30, if the whole number portion of the quotient is in the sequence, the number is prime.

Examples

			Example: 3623, with LSD 3 and (SOD-1)/3 non-integer; Then 3623/30 = 120.766, or 120, which is in the sequence, thus 3623 is prime.
		

Crossrefs

Programs

Formula

a(n) = (A132235(n) - 23)/30 = Floor[A132235(n)/30]. - Chandler

Extensions

Edited by Ray Chandler, Apr 07 2009

A282324 Greater of twin primes congruent to 19 (mod 30).

Original entry on oeis.org

19, 109, 139, 199, 229, 349, 619, 829, 859, 1279, 1429, 1489, 1609, 1669, 1699, 1789, 1879, 1999, 2029, 2089, 2239, 2269, 2659, 2689, 3169, 3259, 3469, 3529, 3559, 3769, 3919, 4129, 4159, 4219, 4339, 4519, 4549, 4639, 4789, 4969, 5419, 5479, 5659, 5869, 6199
Offset: 1

Views

Author

Martin Renner, Feb 11 2017

Keywords

Comments

The union of [A282323 and this sequence] is A132242.
The union of [{5, 7}, A282322, this sequence and A282326] is the greater of twin primes sequence A006512.
The union of [{3, 5, 7}, A282321 to A282326] is the twin primes sequence A001097.
Number of terms less than 10^k, k=2,3,4,...: 1, 9, 64, 414, 2734, 19674, 146953, ... - Muniru A Asiru, Feb 09 2018

Crossrefs

Programs

  • GAP
    Filtered(List([1..220], k -> 30*k-11), n -> IsPrime(n) and IsPrime(n-2));  # Muniru A Asiru, Feb 02 2018
  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime(p-2) and p mod 30 eq 19 ]; // Vincenzo Librandi, Feb 13 2017
    
  • Maple
    a:={}:
    for i from 1 to 1229 do
      if isprime(ithprime(i)-2) and ithprime(i) mod 30 = 19 then
        a:={op(a),ithprime(i)}:
      fi:
    od:
    a;
    # More efficient
    select(n -> isprime(n-2) and isprime(n), [seq(30*k+19, k=0..220)]); # Muniru A Asiru, Jan 30 2018
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[# - 2] && Mod[#, 30] == 19 &] (* Vincenzo Librandi, Feb 13 2017 *)
  • PARI
    list(lim)=my(v=List(), p=2); forprime(q=3, lim, if(q-p==2 && q%30==19, listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
    

A214360 Primes congruent to 23 modulo 3120613860.

Original entry on oeis.org

23, 3120613883, 6241227743, 9361841603, 12482455463, 15603069323, 18723683183, 21844297043, 24964910903, 28085524763, 34326752483, 43688594063, 62412277223, 115462712843, 124824554423, 156030693023, 159151306883, 171633762323, 180995603903, 196598673203
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2012

Keywords

Comments

A211889(9) = 3120613860;
the first 10 terms constitute row 9 of triangle A211890, an arithmetic progression of 10 primes.

Crossrefs

Cf. A010051.
Sequences of numbers congruent 23 modulo m: A134517 m=24, A141945 m=25, A140375 m=26, A141963 m=27, A141974 m=28, A141999 m=29, A132235 m=30, A142027 m=31, A142044 m=32, A142062 m=33, A142091 m=35, A142107 m=36, A142132 m=37, A142173 m=39, A142192 m=40, A142220 m=41, A142244 m=42, A142272 m=43, A142302 m=44, A142324 m=45, A142374 m=47, A142405 m=48, A142433 m=49, A142490 m=51, A142518 m=52, A142553 m=53, A142617 m=55, A142650 m=56, A142679 m=57, A142750 m=59, A142790 m=60, A142821 m=61, A142902 m=63, A142935 m=64, A140844 m=210.

Programs

  • Haskell
    a214360 n = a214360_list !! (n-1)
    a214360_list = [x | k <- [0..], let x = 3120613860*k+23, a010051' x == 1]
    
  • Maple
    select(isprime,[seq(23+i*3120613860,i=0..1000)]); # Robert Israel, Jun 07 2015
  • Mathematica
    Select[Range[23, 2 10^11, 3120613860], PrimeQ] (* Vincenzo Librandi, Jun 07 2015 *)
  • PARI
    is(n)=isprime(n) && n%3120613860==23 \\ Charles R Greathouse IV, Jul 02 2016

Formula

a(n) ~ 658414080n log n. - Charles R Greathouse IV, Jul 02 2016

A140378 Lengths of runs of consecutive primes and nonprimes in A007775.

Original entry on oeis.org

1, 12, 1, 6, 1, 3, 1, 6, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 4, 2, 1, 2, 6, 1, 1, 1, 1, 1, 6, 2, 1, 2, 4, 3, 2, 2, 4, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 1, 2, 2, 3, 2, 2, 4, 2, 2, 1, 1, 4, 2, 1, 1, 4, 1, 3, 2, 1, 1, 3, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 13 2008

Keywords

Comments

Primes can be classified according to their remainder modulo 30: remainder 1 (A136066), 7 (A132231), 11 (A132232), 13 (A132233), 17 (A039949), 19 (A132234), 23 (A132235), or 29 (A132236). In the sequence A007775 of all numbers (prime or nonprime) in any of these remainder classes, we look for runs of numbers that are successively prime or nonprime and place the lengths of these runs in this sequence.

Examples

			Groups of runs in A007775 are (1), (7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47), (49), (53, 59, 61, 67, 71, 73), (77), (79, 83,...), which is 1 nonprime followed by 12 primes followed by 1 nonprime followed by 6 primes etc.
		

Crossrefs

Programs

  • Maple
    A007775 := proc(n) option remember ; local a; if n = 1 then 1; else for a from A007775(n-1)+1 do if a mod 2 <>0 and a mod 3 <>0 and a mod 5 <> 0 then RETURN(a) ; fi ; od: fi ; end: A := proc() local al,isp,n; al := 0: isp := false ; n := 1: while n< 300 do a := A007775(n) ; if isprime(a) <> isp then printf("%d,",al) ; al := 1; isp := not isp ; else al := al+1 ; fi ; n := n+1: od: end: A() ; # R. J. Mathar, Jun 16 2008

Extensions

Edited by R. J. Mathar, Jun 16 2008

A177966 Indices m for which A177961(m) = 2 + m.

Original entry on oeis.org

2, 5, 8, 11, 12, 14, 20, 23, 26, 27, 29, 35, 41, 42, 44, 50, 53, 56, 57, 65, 68, 74, 83, 86, 87, 89, 95, 98, 113, 116, 117, 119, 125, 128, 131, 132, 134, 140, 146, 147, 155, 158, 173, 176, 177, 179, 191, 192, 194, 200, 209, 215, 221, 222, 224, 230, 233, 239, 245, 251, 252, 254
Offset: 1

Views

Author

Vladimir Shevelev, May 16 2010

Keywords

Comments

All m for which 2*m+1 is in A003627 are in the sequence:
This concerns m=2, 5, 8, 11, 14, 20, 23, 26, 29, 35,...
Union of (A003627-1)/2 and (A132235+1)/2. - Robert Israel, Jul 31 2015

Crossrefs

Programs

  • Maple
    A090368 := proc(n) A020639(2*n-1) ; end proc:
    A177961 := proc(n) (A090368(n)+A090368(n+1)) /2 ; end proc:
    isA177966 := proc(n) A177961(m) = m+2 ; end proc:
    for m from 1 to 800 do if isA177966(m) then printf("%d,",m) ; end if; end do:
    # R. J. Mathar, Oct 25 2010
    N:= 1000: # to get all terms <= N
    A1:= map(t -> (t-1)/2, select(isprime, {seq(6*i-1, i=1..(N+1)/3)})):
    A2:= map(t -> (t+1)/2, select(isprime, {seq(23+30*i,i=0..(N-12)/15)})):
    sort(convert(A1 union A2,list));
    # Robert Israel, Jul 31 2015
  • Mathematica
    M = 1000; (* to get all terms <= M *)
    A1 = (Select[Table[6 i - 1, {i, 1, (M + 1)/3}], PrimeQ] - 1)/2;
    A2 = (Select[Table[23 + 30 i, {i, 0, (M - 12)/15}], PrimeQ] + 1)/2;
    Union[A1, A2] (* Jean-François Alcover, Jul 17 2020, after Robert Israel *)

Extensions

Corrected (11, 23, 27, etc. inserted) and extended by R. J. Mathar, Oct 25 2010

A140387 Binary encoding of the location of primes in integer sets r+30*n with remainder r=1,7,11,..,29.

Original entry on oeis.org

1, 32, 16, 129, 73, 36, 194, 6, 42, 176, 225, 12, 21, 89, 18, 97, 25, 243, 44, 44, 196, 34, 166, 90, 149, 152, 109, 66, 135, 225, 89, 169, 169, 28, 82, 210, 33, 213, 179, 170, 38, 92, 15, 96, 252, 171, 94, 7, 209, 2, 187, 22, 153, 9, 236, 197, 71, 179, 212, 197, 186
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 10 2008

Keywords

Comments

Classify all integers 30n+r with r= 1, 7, 11, 13, 17, 19, 23 or 29 as nonprime or prime and assign bit positions 0=LSB, 1, 2, 3, .., 7=MSB to the 8 remainders in the same order. Raise the bit if 30n+r is nonprime, erase it if 30n+r is prime.
The sequence interprets this as a number in base 2 and shows the decimal representation.

Examples

			For n=1, the 8 numbers 31 (r=1), 37 (r=7), 41 (r=11), 43 (r=17), 47 (r=17), 49 (r=19), 53 (r=23) and 59 (r=29) are prime, prime, prime, prime, prime, nonprime, prime, prime, prime, which is rendered into the binary 000100000 = 2^5=32=a(1).
		

Crossrefs

Cf. A105052 (analog in base 10, prime = bit 1, remainder 1 = MSB), A140891 (analog in base 14, prime = bit 0, remainder 1 = LSB).

Extensions

Edited by R. J. Mathar, Jun 17 2008
Showing 1-10 of 12 results. Next