cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A270700 Triangular Star of David numbers (the figurate number of triangles framing a hexagram: a(0) = 12; thereafter a(n) = 36*n + 6).

Original entry on oeis.org

12, 42, 78, 114, 150, 186, 222, 258, 294, 330, 366, 402, 438, 474, 510, 546, 582, 618, 654, 690, 726, 762, 798, 834, 870, 906, 942, 978, 1014, 1050, 1086, 1122, 1158, 1194, 1230, 1266, 1302, 1338, 1374, 1410, 1446, 1482, 1518, 1554, 1590, 1626, 1662, 1698, 1734
Offset: 0

Views

Author

Peter M. Chema, Mar 21 2016

Keywords

Comments

Also known as unitary triangular hexagram numbers, according to the author.
After a(0), the sum of inner and outer perimeters of triangle edges forming each hexagram is [36n - 6], always 12 less than the number of triangles framing the hexagram. Where a(0)=12, the perimeter is also 12.
Compare with A270545, the number of equilateral triangle units forming perimeters of equilateral triangle, which follows the same application.

Examples

			Illustration of initial terms are found in the three above links.
		

Crossrefs

Programs

  • Magma
    [12] cat [36*n + 6: n in [1..50]]; // Vincenzo Librandi, Mar 28 2016
  • Mathematica
    CoefficientList[Series[6 (1 + x) (2 + x)/(1 - x)^2, {x, 0, 40}], x] (* Michael De Vlieger, Mar 23 2016 *)
    Join[{12},36*Range[50]+6] (* or *) LinearRecurrence[{2,-1},{12,42,78},50] (* Harvey P. Dale, Nov 03 2016 *)
  • PARI
    a(n) = if (!n, 12, 36*n + 6); \\ Michel Marcus, Mar 22 2016
    
  • PARI
    Vec(6*(1+x)*(2+x)/(1-x)^2 + O(x^50)) \\ Colin Barker, Mar 22 2016
    

Formula

a(0) = 12; thereafter, a(n) = 36*n + 6.
From Colin Barker, Mar 22 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 2.
G.f.: 6*(1+x)*(2+x)/(1-x)^2. (End)
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*(exp(x)*(6*x + 1) + 1).
a(n) = 6*A271114(n). (End)

Extensions

More terms from Vincenzo Librandi, Mar 28 2016

A308196 Partial sums of A063808.

Original entry on oeis.org

1, 5, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331, 337, 343, 349, 355
Offset: 0

Views

Author

N. J. A. Sloane, Jun 21 2019

Keywords

Comments

Growth series for Z as generated by {2, 3}.

References

  • Avinoam Mann, How Groups Grow, London Mathematical Society Lecture Note Series, Vol. 335, Cambridge University Press, 2012; ISBN: 1107657504,9781107657502. See Example 6, page 3.

Crossrefs

Programs

  • Mathematica
    Accumulate[PadRight[{1,4,8},100,6]] (* Paolo Xausa, Nov 14 2023 *)

Formula

a(n) = A271114(n) = A016921(n) = 6n+1 for n>=2. - R. J. Mathar, Jul 22 2021

A144917 a(n) is the maximal odd value attained by A144916(n).

Original entry on oeis.org

1, 3, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331
Offset: 1

Views

Author

Reikku Kulon, Sep 25 2008

Keywords

Comments

Most of these are primes or semiprimes.
Is a(n) = A271114(n-2) for n>=3 ? - R. J. Mathar, Jun 21 2025

Crossrefs

Showing 1-3 of 3 results.