cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 72 results. Next

A095022 Number of 5k+2 primes (A030432) in range [2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 0, 1, 2, 4, 5, 11, 22, 33, 65, 117, 220, 404, 762, 1422, 2693, 5123, 9634, 18409, 35112, 67061, 128302, 246706, 473477, 911557, 1756669, 3390509, 6552186, 12674857, 24545491, 47584387, 92331524, 179317837, 348547958, 678026207, 1319948267, 2571405351
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A129079 Prime numbers that are the sum of consecutive prime numbers with the final digit 7 (primes in A030432).

Original entry on oeis.org

7, 61, 379, 643, 967, 2549, 9547, 19531, 45121, 70199, 78467, 127637, 150373, 156257, 175069, 195311, 209459, 246709, 286999, 295513, 312931, 330859, 349207, 378239, 398357, 518191, 553733, 765287, 779731, 838927, 853981, 1166597
Offset: 1

Views

Author

Tomas Xordan, May 11 2007

Keywords

Examples

			a(6)=2549 because 2549=A030432(1)+ A030432(2)+A030432(3)+A030432(4)+ A030431(5)+A030432(6)+A030432(7)+ A030432(8)+A030432(9)+A030432(10)+A030432(11)+A030432(12)+A030432(13)+A030432(14)+A030432(15)+A030432(16)+A030432(17)= 7+ 17+ 37+ 47+ 67+ 97+ 107+ 127+ 137+ 157+ 167+ 197+ 227+ 257+ 277+ 307+ 317; and 2549 is a prime number.
		

Crossrefs

Formula

a(n)=A030432(1)+A030432(2)+...+A030432(x); a is a prime number.

A002496 Primes of the form k^2 + 1.

Original entry on oeis.org

2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this sequence is infinite, but this has never been proved.
An equivalent description: primes of form P = (p1*p2*...*pm)^k + 1 where p1..pm are primes and k > 1, since then k must be even for P to be prime.
Also prime = p(n) if A054269(n) = 1, i.e., quotient-cycle-length = 1 in continued fraction expansion of sqrt(p). - Labos Elemer, Feb 21 2001
Also primes p such that phi(p) is a square.
Also primes of form x*y + z, where x, y and z are three successive numbers. - Giovanni Teofilatto, Jun 05 2004
It is a result that goes back to Mirsky that the set of primes p for which p-1 is squarefree has density A, where A = A005596 denotes the Artin constant. More precisely, Sum_{p <= x} mu(p-1)^2 = A*x/log x + o(x/log x) as x tends to infinity. Conjecture: Sum_{p <= x, mu(p-1)=1} 1 = (A/2)*x/log x + o(x/log x) and Sum_{p <= x, mu(p-1)=-1} 1 = (A/2)*x/log x + o(x/log x). - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
Also primes of the form x^y + 1, where x > 0, y > 1. Primes of the form x^y - 1 (x > 0, y > 1) are the Mersenne primes listed in A000668(n) = {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ...}. - Alexander Adamchuk, Mar 04 2007
With the exception of the first two terms {2,5}, the continued fraction (1 + sqrt(p))/2 has period 3. - Artur Jasinski, Feb 03 2010
With the exception of the first term {2}, congruent to 1 (mod 4). - Artur Jasinski, Mar 22 2011
With the exception of the first two terms, congruent to 1 or 17 (mod 20). - Robert Israel, Oct 14 2014
From Bernard Schott, Mar 22 2019: (Start)
These primes are the primitive terms which generate the sequence of integers with only one prime factor and whose Euler's totient is a square: A054755. So this sequence is a subsequence of A054755 and of A039770. Additionally, the terms of this sequence also have a square cototient, so this sequence is a subsequence of A063752 and A054754.
If p prime = n^2 + 1, phi(p) = n^2 and cototient(p) = 1^2.
Except for 3, the four Fermat primes in A019434 {5, 17, 257, 65537}, belong to this sequence; with F_k = 2^(2^k) + 1, phi(F_k) = (2^(2^(k-1)))^2.
See the file "Subfamilies and subsequences" (& I) in A039770 for more details, proofs with data, comments, formulas and examples. (End)
In this sequence, primes ending with 7 seem to appear twice as often as primes ending with 1. This is because those with 7 come from integers ending with 4 or 6, while those with 1 come only from integers ending with 0 (see De Koninck & Mercier reference). - Bernard Schott, Nov 29 2020
The set of odd primes p for which every elliptic curve of the form y^2 = x^3 + d*x has order p-1 over GF(p) for those d with (d,p)=1 and d a fourth power modulo p. - Gary Walsh, Sep 01 2021 [edited, Gary Walsh, Apr 26 2025]

References

  • Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 211 pp. 34 and 169, Ellipses, Paris, 2004.
  • Leonhard Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 22.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
  • Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
  • C. Stanley Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.

Crossrefs

Cf. A083844 (number of these primes < 10^n), A199401 (growth constant).
Cf. A000668 (Mersenne primes), A019434 (Fermat primes).
Subsequence of A039770.
Cf. A010051, subsequence of A002522.
Cf. A237040 (an analog for n^3 + 1).
Cf. A010051, A000290; subsequence of A028916.
Subsequence of A039770, A054754, A054755, A063752.
Primes of form n^2+b^4, b fixed: A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).
Cf. A030430 (primes ending with 1), A030432 (primes ending with 7).

Programs

  • Haskell
    a002496 n = a002496_list !! (n-1)
    a002496_list = filter ((== 1) . a010051') a002522_list
    -- Reinhard Zumkeller, May 06 2013
    
  • Magma
    [p: p in PrimesUpTo(100000)| IsSquare(p-1)]; // Vincenzo Librandi, Apr 09 2011
    
  • Maple
    select(isprime, [2, seq(4*i^2+1, i= 1..1000)]); # Robert Israel, Oct 14 2014
  • Mathematica
    Select[Range[100]^2+1, PrimeQ]
    Join[{2},Select[Range[2,300,2]^2+1,PrimeQ]] (* Harvey P. Dale, Dec 18 2018 *)
  • PARI
    isA002496(n) = isprime(n) && issquare(n-1) \\ Michael B. Porter, Mar 21 2010
    
  • PARI
    is_A002496(n)=issquare(n-1)&&isprime(n) \\ For "random" numbers in the range 10^10 and beyond, at least 5 times faster than the above. - M. F. Hasler, Oct 14 2014
    
  • Python
    # Python 3.2 or higher required
    from itertools import accumulate
    from sympy import isprime
    A002496_list = [n+1 for n in accumulate(range(10**5),lambda x,y:x+2*y-1) if isprime(n+1)] # Chai Wah Wu, Sep 23 2014
    
  • Python
    # Python 2.4 or higher required
    from sympy import isprime
    A002496_list = list(filter(isprime, (n*n+1 for n in range(10**5)))) # David Radcliffe, Jun 26 2016

Formula

There are O(sqrt(n)/log(n)) terms of this sequence up to n. But this is just an upper bound. See the Bateman-Horn or Wolf papers, for example, for the conjectured for what is believed to be the correct density.
a(n) = 1 + A005574(n)^2. - R. J. Mathar, Jul 31 2015
Sum_{n>=1} 1/a(n) = A172168. - Amiram Eldar, Nov 14 2020
a(n+1) = 4*A001912(n)^2 + 1. - Hal M. Switkay, Apr 03 2022

Extensions

Formula, reference, and comment from Charles R Greathouse IV, Aug 24 2009
Edited by M. F. Hasler, Oct 14 2014

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A039949 Primes of the form 30n - 13.

Original entry on oeis.org

17, 47, 107, 137, 167, 197, 227, 257, 317, 347, 467, 557, 587, 617, 647, 677, 797, 827, 857, 887, 947, 977, 1097, 1187, 1217, 1277, 1307, 1367, 1427, 1487, 1607, 1637, 1667, 1697, 1787, 1847, 1877, 1907, 1997, 2027, 2087, 2207, 2237, 2267, 2297, 2357, 2417
Offset: 1

Views

Author

Keywords

Comments

This linear form produces the most primes for n between 1 and 1000 (411/1000).
Primes congruent to 17 (mod 30). - Omar E. Pol, Aug 15 2007
Primes ending in 7 with (SOD-1)/3 non-integer where SOD is sum of digits. - Ki Punches
Or primes p such that (p mod 3) = (p mod 5) and (p mod 2) <> (p mod 3), (p > 2). - Mikk Heidemaa, Jan 19 2016

References

  • C. Clawson, Mathematical Mysteries, Plenum Press, 1996, p. 173

Crossrefs

Programs

Formula

a(n) = A158648(n)*30 + 17. - Ray Chandler, Apr 07 2009
Intersection of A030432 and A007528. - Ray Chandler, Apr 07 2009
a(n) = A141860(n+1). - Zak Seidov, Apr 15 2015

Extensions

Extended by Ray Chandler, Apr 07 2009

A244763 Prime numbers ending in the prime number 13.

Original entry on oeis.org

13, 113, 313, 613, 1013, 1213, 1613, 1913, 2113, 2213, 2713, 3313, 3413, 3613, 4013, 4513, 4813, 5113, 5413, 5813, 6113, 7013, 7213, 8513, 8713, 9013, 9413, 9613, 10313, 10513, 10613, 11113, 11213, 11813, 12113, 12413, 12613, 12713, 13313, 13513, 13613, 13913
Offset: 1

Views

Author

Vincenzo Librandi, Jul 06 2014

Keywords

Comments

Also primes of the form 100*n+13. Subsequence of A141885, A141937, A166573.

Crossrefs

Cf. Prime numbers ending in the prime number k: A030431 (k=3), A030432 (k=7), A167442 (k=11), this sequence (k=13), A244764 (k=17), A244765 (k=19), A244766 (k=23), A244767 (k=29), A167388 (k=31), A244768 (k=37), A167443 (k=41), A244769 (k=43), A244770 (k=47), A244771 (k=53), A244772 (k=59), A167445 (k=61), A244773 (k=67), A167441 (k=71), A244774 (k=73), A244775 (k=79), A244776 (k=83), A244777 (k=89), A244778 (k=97), A167626 (k=101), A167627 (k=163).

Programs

  • Magma
    [n: n in PrimesUpTo(14000) | n mod 100 eq 13];
    
  • Maple
    select(isprime, [13+100*n $ n=0..1000]); # Robert Israel, Jul 06 2014
  • Mathematica
    Select[Prime[Range[5, 2000]], Take[IntegerDigits[#], -2]=={1, 3}&]
  • PARI
    select(x->(x % 100)==13, primes(2000)) \\ Michel Marcus, Jul 06 2014
    
  • Sage
    [p for p in primes(14000) if mod(p,100) == 13] # Bruno Berselli, Jul 07 2014

A132231 Primes congruent to 7 (mod 30).

Original entry on oeis.org

7, 37, 67, 97, 127, 157, 277, 307, 337, 367, 397, 457, 487, 547, 577, 607, 727, 757, 787, 877, 907, 937, 967, 997, 1087, 1117, 1237, 1297, 1327, 1447, 1567, 1597, 1627, 1657, 1747, 1777, 1867, 1987, 2017, 2137, 2287, 2347, 2377, 2437, 2467, 2557, 2617, 2647
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes ending in 7 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 07 2009
Intersection of A030432 and A002476. - Ray Chandler, Apr 07 2009
Only from 4927 on, there are more composite numbers than primes in {7+30k}, see A227869. - M. F. Hasler, Nov 02 2013
Terms are non-twin primes A007510, except for 7. - Jonathan Sondow, Oct 27 2017

Crossrefs

Programs

  • Haskell
    a132231 n = a132231_list !! (n-1)
    a132231_list = [x | k <- [0..], let x = 30 * k + 7, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Magma
    [p: p in PrimesUpTo(3000) | p mod 30 eq 7 ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[30*Range[0,100]+7,PrimeQ] (* Harvey P. Dale, Feb 01 2012 *)
    Select[Prime[Range[1000]],MemberQ[{7},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    forstep(p=7,1999,30,isprime(p)&&print1(p",")) \\ M. F. Hasler, Nov 02 2013

Formula

a(n) = A158573(n)*30 + 7. - Ray Chandler, Apr 07 2009
a(n) = A211890(4,n-1) for n <= 5. - Reinhard Zumkeller, Jul 13 2012

Extensions

Extended by Ray Chandler, Apr 07 2009

A153418 Primes p such that p+18 is also prime.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 53, 61, 71, 79, 83, 89, 109, 113, 131, 139, 149, 163, 173, 179, 181, 193, 211, 223, 233, 239, 251, 263, 293, 313, 331, 349, 379, 383, 401, 421, 431, 439, 443, 449, 461, 491, 503, 523, 569, 599, 601, 613, 641, 643, 659, 673, 683
Offset: 1

Views

Author

Keywords

Comments

Both p and p+18 have the same digital root (A010888). - Zak Seidov, Sep 14 2015
No term belongs to A030432. - Michel Marcus, Sep 14 2015
No term belongs to A045437. - Bruno Berselli, Sep 14 2015

Examples

			5 is in sequence because 5+18=23 is also prime;
11 is in sequence because 11+18=29 is also prime.
		

Crossrefs

A031936 is a subsequence. - Zak Seidov, Sep 13 2015

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p+18)]; // Vincenzo Librandi, Apr 14 2013
    
  • Mathematica
    lst={};d=18;Do[p=Prime[n];If[PrimeQ[p+d],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[150]], PrimeQ[(# + 18)]&] (* Vincenzo Librandi, Apr 14 2013 *)
  • PARI
    list(n)=forprime(p=1,n,if(isprime(p+18),print1(p", ")))  \\ Anders Hellström, Sep 13 2015
    
  • Sage
    [p for p in primes(700) if is_prime(p+18)]; # Bruno Berselli, Sep 14 2015

Extensions

Definition improved by Bruno Berselli, Oct 31 2012

A102342 Numbers k such that 10k + 7 is prime.

Original entry on oeis.org

0, 1, 3, 4, 6, 9, 10, 12, 13, 15, 16, 19, 22, 25, 27, 30, 31, 33, 34, 36, 39, 45, 46, 48, 54, 55, 57, 58, 60, 61, 64, 67, 72, 75, 78, 79, 82, 85, 87, 88, 90, 93, 94, 96, 97, 99, 108, 109, 111, 118, 121, 123, 127, 129, 130, 132, 136, 142, 144, 148, 156, 159, 160, 162, 163
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 20 2005

Keywords

Examples

			10*1 + 7 = 17 (prime);
10*48 + 7 = 487 (prime);
10*99 + 7 = 997 (prime).
		

Crossrefs

Programs

Extensions

Edited and extended by Ray Chandler, Nov 07 2006

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016
Showing 1-10 of 72 results. Next