A211957 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.
1, 1, 1, 1, 4, 2, 1, 9, 12, 4, 1, 16, 40, 32, 8, 1, 25, 100, 140, 80, 16, 1, 36, 210, 448, 432, 192, 32, 1, 49, 392, 1176, 1680, 1232, 448, 64, 1, 64, 672, 2688, 5280, 5632, 3328, 1024, 128, 1, 81, 1080, 5544, 14256, 20592, 17472, 8640, 2304, 256, 1, 100, 1650, 10560, 34320, 64064, 72800, 51200, 21760, 5120, 512
Offset: 0
Examples
Triangle begins .n\k.|..0....1....2....3....4....5....6....7 = = = = = = = = = = = = = = = = = = = = = = = ..0..|..1 ..1..|..1....1 ..2..|..1....4....2 ..3..|..1....9...12....4 ..4..|..1...16...40...32....8 ..5..|..1...25..100..140...80...16 ..6..|..1...36..210..448..432..192...32 ..7..|..1...49..392.1176.1680.1232..448...64
Links
- R. J. Mathar, Recurrence for the Atkinson-Steenwijk Integrals for Resistors in the Infinite Triangular Lattice, vixra:2208.0111
- Eric Weisstein's World of Mathematics, Morgan-Voyce polynomials
Formula
T(n,0) = 1 and for k > 0, T(n,k) = n/k*2^(k-1)*binomial(n+k-1,2*k-1) = 2^(k-1)*A208513(n,k).
O.g.f.: ((1-t)-t*x)/((1-t)^2-2*t*x) = 1 + (1+x)*t + (1+4*x+2*x^2)*t^2 + ....
n-th row polynomial R(n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) = T(2*n,u), where u = sqrt((x+2)/2) and T(n,u) denotes the Chebyshev polynomial of the first kind.
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)-T(n-2,k), T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 16 2013
Comments