cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211957 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 9, 12, 4, 1, 16, 40, 32, 8, 1, 25, 100, 140, 80, 16, 1, 36, 210, 448, 432, 192, 32, 1, 49, 392, 1176, 1680, 1232, 448, 64, 1, 64, 672, 2688, 5280, 5632, 3328, 1024, 128, 1, 81, 1080, 5544, 14256, 20592, 17472, 8640, 2304, 256, 1, 100, 1650, 10560, 34320, 64064, 72800, 51200, 21760, 5120, 512
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

Triangle formed from the even numbered rows of A211956.
The coefficients of the Morgan-Voyce polynomials b(n,x) := sum {k = 0..n} binomial(n+k,2*k)*x^k are listed in A085478. The rational functions 1/2*(b(2*n,2*x) + 1)/b(n,2*x) turn out to be integer polynomials. Their coefficients are listed in this triangle. These polynomials occur as factors of the row polynomials R(n,x) of A211955.
This triangle appears to be the row reverse of the unsigned triangle |A204021|.

Examples

			Triangle begins
.n\k.|..0....1....2....3....4....5....6....7
= = = = = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1....1
..2..|..1....4....2
..3..|..1....9...12....4
..4..|..1...16...40...32....8
..5..|..1...25..100..140...80...16
..6..|..1...36..210..448..432..192...32
..7..|..1...49..392.1176.1680.1232..448...64
		

Crossrefs

Formula

T(n,0) = 1 and for k > 0, T(n,k) = n/k*2^(k-1)*binomial(n+k-1,2*k-1) = 2^(k-1)*A208513(n,k).
O.g.f.: ((1-t)-t*x)/((1-t)^2-2*t*x) = 1 + (1+x)*t + (1+4*x+2*x^2)*t^2 + ....
n-th row polynomial R(n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) = T(2*n,u), where u = sqrt((x+2)/2) and T(n,u) denotes the Chebyshev polynomial of the first kind.
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)-T(n-2,k), T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 16 2013