cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A111125 Triangle read by rows: T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.

Original entry on oeis.org

1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 30, 27, 9, 1, 11, 55, 77, 44, 11, 1, 13, 91, 182, 156, 65, 13, 1, 15, 140, 378, 450, 275, 90, 15, 1, 17, 204, 714, 1122, 935, 442, 119, 17, 1, 19, 285, 1254, 2508, 2717, 1729, 665, 152, 19, 1, 21, 385, 2079, 5148, 7007, 5733, 2940, 952, 189, 21, 1
Offset: 0

Views

Author

N. J. A. Sloane, Oct 16 2005

Keywords

Comments

Riordan array ((1+x)/(1-x)^2, x/(1-x)^2). Row sums are A002878. Diagonal sums are A003945. Inverse is A113187. An interesting factorization is (1/(1-x), x/(1-x))(1+2*x, x*(1+x)). - Paul Barry, Oct 17 2005
Central coefficients of rows with odd numbers of term are A052227.
From Wolfdieter Lang, Jun 26 2011: (Start)
T(k,s) appears as T_s(k) in the Knuth reference, p. 285.
This triangle is related to triangle A156308(n,m), appearing in this reference as U_m(n) on p. 285, by T(k,s) - T(k-1,s) = A156308(k,s), k>=s>=1 (identity on p. 286). T(k,s) = A156308(k+1,s+1) - A156308(k,s+1), k>=s>=0 (identity on p. 286).
(End)
A111125 is jointly generated with A208513 as an array of coefficients of polynomials v(n,x): initially, u(1,x)= v(1,x)= 1; for n>1, u(n,x)= u(n-1,x) +x*(x+1)*v(n-1) and v(n,x)= u(n-1,x) +x*v(n-1,x) +1. See the Mathematica section. The columns of A111125 are identical to those of A208508. Here, however, the alternating row sums are periodic (with period 1,2,1,-1,-2,-1). - Clark Kimberling, Feb 28 2012
This triangle T(k,s) (with signs and columns scaled with powers of 5) appears in the expansion of Fibonacci numbers F=A000045 with multiples of odd numbers as indices in terms of odd powers of F-numbers. See the Jennings reference, p. 108, Theorem 1. Quoted as Lemma 3 in the Ozeki reference given in A111418. The formula is: F_{(2*k+1)*n} = Sum_{s=0..k} ( T(k,s)*(-1)^((k+s)*n)*5^s*F_{n}^(2*s+1) ), k >= 0, n >= 0. - Wolfdieter Lang, Aug 24 2012
From Wolfdieter Lang, Oct 18 2012: (Start)
This triangle T(k,s) appears in the formula x^(2*k+1) - x^(-(2*k+1)) = Sum_{s=0..k} ( T(k,s)*(x-x^(-1))^(2*s+1) ), k>=0. Prove the inverse formula (due to the Riordan property this will suffice) with the binomial theorem. Motivated to look into this by the quoted paper of Wang and Zhang, eq. (1.4).
Alternating row sums are A057079.
The Z-sequence of this Riordan array is A217477, and the A-sequence is (-1)^n*A115141(n). For the notion of A- and Z-sequences for Riordan triangles see a W. Lang link under A006232. (End)
The signed triangle ((-1)^(k-s))*T(k,s) gives the coefficients of (x^2)^s of the polynomials C(2*k+1,x)/x, with C the monic integer Chebyshev T-polynomials whose coefficients are given in A127672 (C is there called R). See the odd numbered rows there. This signed triangle is the Riordan array ((1-x)/(1+x)^2, x/(1+x)^2). Proof by comparing the o.g.f. of the row polynomials where x is replaced by x^2 with the odd part of the bisection of the o.g.f. for C(n,x)/x. - Wolfdieter Lang, Oct 23 2012
From Wolfdieter Lang, Oct 04 2013: (Start)
The signed triangle S(k,s) := ((-1)^(k-s))*T(k,s) (see the preceding comment) is used to express in a (4*(k+1))-gon the length ratio s(4*(k+1)) = 2*sin(Pi/4*(k+1)) = 2*cos((2*k+1)*Pi/(4*(k+1))) of a side/radius as a polynomial in rho(4*(k+1)) = 2*cos(Pi/4*(k+1)), the length ratio (smallest diagonal)/side:
s(4*(k+1)) = Sum_{s=0..k} ( S(k,s)*rho(4*(k+1))^(2*s+1) ).
This is to be computed modulo C(4*(k+1), rho(4*(k+1)) = 0, the minimal polynomial (see A187360) in order to obtain s(4*(k+1)) as an integer in the algebraic number field Q(rho(4*(k+1))) of degree delta(4*(k+1)) (see A055034). Thanks go to Seppo Mustonen for asking me to look into the problem of the square of the total length in a regular n-gon, where this formula is used in the even n case. See A127677 for the formula in the (4*k+2)-gon. (End)
From Wolfdieter Lang, Aug 14 2014: (Start)
The row polynomials for the signed triangle (see the Oct 23 2012 comment above), call them todd(k,x) = Sum_{s=0..k} ( (-1)^(k-s)*T(k,s)*x^s ) = S(k, x-2) - S(k-1, x-2), k >= 0, with the Chebyshev S-polynomials (see their coefficient triangle (A049310) and S(-1, x) = 0), satisfy the recurrence todd(k, x) = (-1)^(k-1)*((x-4)/2)*todd(k-1, 4-x) + ((x-2)/2)*todd(k-1, x), k >= 1, todd(0, x) = 1. From the Aug 03 2014 comment on A130777.
This leads to a recurrence for the signed triangle, call it S(k,s) as in the Oct 04 2013 comment: S(k,s) = (1/2)*(1 + (-1)^(k-s))*S(k-1,s-1) + (2*(s+1)*(-1)^(k-s) - 1)*S(k-1,s) + (1/2)*(-1)^(k-s)*Sum_{j=0..k-s-2} ( binomial(j+s+2,s)*4^(j+2)* S(k-1, s+1+j) ) for k >= s >= 1, and S(k,s) = 0 if k < s and S(k,0) = (-1)^k*(2*k+1). Note that the recurrence derived from the Riordan A-sequence A115141 is similar but has simpler coefficients: S(k,s) = sum(A115141(j)*S(k-1,s-1+j), j=0..k-s), k >= s >=1.
(End)
From Tom Copeland, Nov 07 2015: (Start)
Rephrasing notes here: Append an initial column of zeros, except for a 1 at the top, to A111125 here. Then the partial sums of the columns of this modified entry are contained in A208513. Append an initial row of zeros to A208513. Then the difference of consecutive pairs of rows of the modified A208513 generates the modified A111125. Cf. A034807 and A127677.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 20 and 21) and Damianou and Evripidou (p. 7).
As suggested by the equations on p. 7 of Damianou and Evripidou, the signed row polynomials of this entry are given by (p(n,x))^2 = (A(2*n+1, x) + 2)/x = (F(2*n+1, (2-x), 1, 0, 0, ... ) + 2)/x = F(2*n+1, -x, 2*x, -3*x, ..., (-1)^n n*x)/x = -F(2*n+1, x, 2*x, 3*x, ..., n*x)/x, where A(n,x) are the polynomials of A127677 and F(n, ...) are the Faber polynomials of A263196. Cf. A127672 and A127677.
(End)
The row polynomials P(k, x) of the signed triangle S(k, s) = ((-1)^(k-s))*T(k, s) are given from the row polynomials R(2*k+1, x) of triangle A127672 by
P(k, x) = R(2*k+1, sqrt(x))/sqrt(x). - Wolfdieter Lang, May 02 2021

Examples

			Triangle T(k,s) begins:
k\s  0    1     2     3     4     5     6    7    8   9 10
0:   1
1:   3    1
2:   5    5     1
3:   7   14     7     1
4:   9   30    27     9     1
5:  11   55    77    44    11     1
6:  13   91   182   156    65    13     1
7:  15  140   378   450   275    90    15    1
8:  17  204   714  1122   935   442   119   17    1
9:  19  285  1254  2508  2717  1729   665  152   19   1
10: 21  385  2079  5148  7007  5733  2940  952  189  21  1
... Extended and reformatted by _Wolfdieter Lang_, Oct 18 2012
Application for Fibonacci numbers F_{(2*k+1)*n}, row k=3:
F_{7*n} = 7*(-1)^(3*n)*F_n + 14*(-1)^(4*n)*5*F_n^3 + 7*(-1)^(5*n)*5^2*F_n^5 + 1*(-1)^(6*n)*5^3*F_n^7, n>=0. - _Wolfdieter Lang_, Aug 24 2012
Example for the  Z- and A-sequence recurrences  of this Riordan triangle: Z = A217477 = [3,-4,12,-40,...]; T(4,0) = 3*7 -4*14 +12*7 -40*1 = 9. A =  [1, 2, -1, 2, -5, 14, ..]; T(5,2) = 1*30 + 2*27 - 1*9 + 2*1= 77. _Wolfdieter Lang_, Oct 18 2012
Example for the (4*(k+1))-gon length ratio s(4*(k+1))(side/radius) as polynomial in the ratio rho(4*(k+1)) ((smallest diagonal)/side): k=0, s(4) = 1*rho(4) = sqrt(2); k=1, s(8) = -3*rho(8) + rho(8)^3 = sqrt(2-sqrt(2)); k=2, s(12) = 5*rho(12) - 5*rho(12)^3 + rho(12)^5, and C(12,x) = x^4 - 4*x^2 + 1, hence rho(12)^5 = 4*rho(12)^3 - rho(12), and s(12) = 4*rho(12) - rho(12)^3 = sqrt(2 - sqrt(3)). - _Wolfdieter Lang_, Oct 04 2013
Example for the recurrence for the signed triangle S(k,s)= ((-1)^(k-s))*T(k,s) (see the Aug 14 2014 comment above):
S(4,1) = 0 + (-2*2 - 1)*S(3,1) - (1/2)*(3*4^2*S(3,2) + 4*4^3*S(3,3)) = - 5*14 - 3*8*(-7) - 128*1 = -30. The recurrence from the Riordan A-sequence A115141 is S(4,1) = -7 -2*14 -(-7) -2*1 = -30. - _Wolfdieter Lang_, Aug 14 2014
		

Crossrefs

Mirror image of A082985, which see for further references, etc.
Also closely related to triangles in A098599 and A100218.

Programs

  • Magma
    [((2*n+1)/(n+k+1))*Binomial(n+k+1, 2*k+1): k in [0..n], n in [0..12]];  // G. C. Greubel, Feb 01 2022
  • Mathematica
    (* First program *)
    u[1, x_]:=1; v[1, x_]:=1; z=16;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208513 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A111125 *) (* Clark Kimberling, Feb 28 2012 *)
    (* Second program *)
    T[n_, k_]:= ((2*n+1)/(2*k+1))*Binomial[n+k, 2*k];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 01 2022 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 3*T(n-1,k) if n==1 else 2*T(n-1,k)
        return T(n-1,k-1) - T(n-2,k) - h
    A111125 = lambda n,k: (-1)^(n-k)*T(n,k)
    for n in (0..9): [A111125(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.
From Peter Bala, Apr 30 2012: (Start)
T(n,k) = binomial(n+k,2*k) + 2*binomial(n+k,2*k+1).
The row generating polynomials P(n,x) are a generalization of the Morgan-Voyce polynomials b(n,x) and B(n,x). They satisfy the recurrence equation P(n,x) = (x+2)*P(n-1,x) - P(n-2,x) for n >= 2, with initial conditions P(0,x) = 1, P(1,x) = x+r+1 and with r = 2. The cases r = 0 and r = 1 give the Morgan-Voyce polynomials A085478 and A078812 respectively. Andre-Jeannin has considered the case of general r.
P(n,x) = U(n+1,1+x/2) + U(n,1+x/2), where U(n,x) denotes the Chebyshev polynomial of the second kind - see A053117. P(n,x) = (2/x)*(T(2*n+2,u)-T(2*n,u)), where u = sqrt((x+4)/4) and T(n,x) denotes the Chebyshev polynomial of the first kind - see A053120. P(n,x) = Product_{k = 1..n} ( x + 4*(sin(k*Pi/(2*n+1)))^2 ). P(n,x) = 1/x*(b(n+1,x) - b(n-1,x)) and P(n,x) = 1/x*{(b(2*n+2,x)+1)/b(n+1,x) - (b(2*n,x)+1)/b(n,x)}, where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478. Cf. A211957.
(End)
From Wolfdieter Lang, Oct 18 2012 (Start)
O.g.f. column No. s: ((1+x)/(1-x)^2)*(x/(1-x)^2)^s, s >= 0. (from the Riordan data given in a comment above).
O.g.f. of the row polynomials R(k,x):= Sum_{s=0..k} ( T(k,s)*x^s ), k>=0: (1+z)/(1-(2+x)*z+z^2) (from the Riordan property).
(End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013

Extensions

More terms from Paul Barry, Oct 17 2005

A211955 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

Let b(n,x) = Sum_{k = 0..n} binomial(n+k,2*k)*x^k denote the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients (in ascending powers of x) of the related polynomial sequence R(n,x) := (1/2)*b(n,2*x) + 1/2. Several sequences already in the database are of the form (R(n,x))n>=0 for a fixed value of x. These include A101265 (x = 1), A011900 (x = 2), A182432 (x = 3), A054318 (x = 4) as well as signed versions of A133872 (x = -1), A109613(x = -2), A146983 (x = -3) and A084159 (x = -4).
The polynomials R(n,x) factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x). The coefficients of P(n,x) occur in several tables in the database, although without the connection to the Morgan-Voyce polynomials being noted - see A211956 for more details. In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u * T(2*n+1,u), where u = sqrt((x+2)/2). Hence R(n,x) = 1/u * T(n,u) * T(n+1,u).

Examples

			Triangle begins
.n\k.|..0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1....1
..2..|..1....3....2
..3..|..1....6...10....4
..4..|..1...10...30...28....8
..5..|..1...15...70..112...72...16
..6..|..1...21..140..336..360..176...32
		

Crossrefs

Formula

T(n,0) = 1; T(n,k) = 2^(k-1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k-1)*x^k/(1-x)^(2*k+1).
O.g.f.: (1-t*(x+2)+t^2)/((1-t)*(1-2*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array (x/(1-x)^3, 2*x/(1-x)^2).
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*Sum_{k = 1..n} binomial(n+k,2*k)*(2*x)^(k-1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n-1,x) - R(n-2,x) - x with initial conditions R(0,x) = 1, R(1,x) = 1+x.
Another recurrence is R(n,x)*R(n-2,x) = R(n-1,x)*(R(n-1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x - {Sum_{k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x - {Sum_{k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently Sum_{k >= 0} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= -2.
Row sums R(n,1) = A101265(n+1); Alt. row sums R(n,-1) = A133872(n+1);
R(n,2) = A011900(n); R(n,-2) = (-1)^n * A109613(n); R(n,3) = A182432;
R(n,-3) = (-1)^n * A146983(n); R(n,4) = A054318(n+1); R(n,-4) = (-1)^n * A084159(n).

A204021 Triangle read by rows: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min(2i-1,2j-1) (A157454).

Original entry on oeis.org

1, 1, -1, 2, -4, 1, 4, -12, 9, -1, 8, -32, 40, -16, 1, 16, -80, 140, -100, 25, -1, 32, -192, 432, -448, 210, -36, 1, 64, -448, 1232, -1680, 1176, -392, 49, -1, 128, -1024, 3328, -5632, 5280, -2688, 672, -64, 1, 256, -2304, 8640, -17472, 20592
Offset: 0

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
a(0)=1 by convention. - Philippe Deléham, Nov 17 2013
The n roots of the n-th polynomial are 1/(1+cos((2*k-1)*Pi/(2*n))) for k = 1..n. See my pdf in the link section for the proof. - Jianing Song, Dec 01 2023

Examples

			Top of the triangle:
  1
  1....-1
  2....-4.....1
  4....-12....9....-1
  8....-32....40...-16....1
  16...-80....140..-100...25....-1
  32...-192...432..-448...210...-36....1
  ...
-448=2*(-100)-2*140-(-32). - _Philippe Deléham_, Nov 17 2013
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[2 i - 1, 2 j - 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]   (* A157454 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                  (* A204021 *)
    TableForm[Table[c[n], {n, 1, 10}]]

Formula

From Peter Bala, May 01 2012: (Start)
The triangle appears to be a signed version of the row reverse of A211957.
If true, then for 0 <= k <= n-1, T(n,k) = (-1)^k*n/(n-k)*2^(n-k-1)*binomial(2*n-k-1,k) and Sum_{k = 0..n} T(n,k)*x^(n-k) = 1/2*(-1)^n*(b(2*n,-2*x) + 1)/b(n,-2*x), where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478.
Conjectural o.g.f.: t*(1-x-x^2*t)/(1-2*t*(1-x)+t^2*x^2) = (1-x)*t + (2-4*x+x^2)*t^2 + .... (End)
T(n,k)=2*T(n-1,k)-2*T(n-1,k-1)-T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 of k<0 or if k>n. - Philippe Deléham, Nov 17 2013

A211956 Coefficients of a sequence of polynomials related to the Morgan-Voyce polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 2, 1, 6, 4, 1, 9, 12, 4, 1, 12, 20, 8, 1, 16, 40, 32, 8, 1, 20, 60, 56, 16, 1, 25, 100, 140, 80, 16, 1, 30, 140, 224, 144, 32, 1, 36, 210, 448, 432, 192, 32, 1, 42, 280, 672, 720, 352, 64, 1, 49, 392, 1176, 1680, 1232, 448, 64
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

The row generating polynomials R(n,x) of A211955 factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x), where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients in ascending powers of x of the polynomials P(n,x).
The odd numbered rows of the present triangle produce triangle A123519; the even numbered row entries are recorded separately in A211957 and appear to equal the unsigned and row reversed form of A204021. The even numbered rows with a factor of 2^(k-1) removed from the k-th column entries produce triangle A208513.

Examples

			Triangle begins
.n\k.|..0....1....2....3....4
= = = = = = = = = = = = = = =
..0..|..1
..1..|..1
..2..|..1....1
..3..|..1....2
..4..|..1....4....2
..5..|..1....6....4
..6..|..1....9...12....4
..7..|..1...12...20....8
..8..|..1...16...40...32....8
..9..|..1...20...60...56...16
...
		

Crossrefs

Formula

T(n,0) = 1; for k > 0, T(2*n,k) = 2^k * binomial(n+k,2*k) = A123519(n,k);
for k > 0, T(2*n-1,k) = n/(n+k)*(2^k)*binomial(n+k,2*k) = 2^(k-1)*A208513(n,k).
O.g.f.: ((1+t)*(1-t^2)-t^2*x)/((1-t^2)^2-2*t^2*x) = 1 + t + (1+x)*t^2 + (1+2*x)*t^3 + (1+4*x+2*x^2)*t^4 + ....
Row generating polynomials: P(2*n,x) := 1/2*(b(2*n,2*x)+1)/b(n,2*x) and P(2*n+1,x) := b(n,2*x), where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478.
The product P(n,x)*P(n+1,x) is the n-th row polynomial of A211955.
In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u*T(2*n+1,u), where u = sqrt((x+2)/2).
Other representations for the row polynomials include
P(2*n,x) = 1/2*(1+x+sqrt(x^2+2*x))^n + 1/2*(1+x-sqrt(x^2+2*x))^n;
P(2*n,x) = n*Sum_{k = 0..n}(-1)^(n-k)/(n+k) * binomial(n+k,2*k) * (2*x+4)^k for n >= 1;
P(2*n+1,x) = (2*n+1)*Sum_{k=0..n} (-1)^(n-k)/(n+k+1) * binomial(n+k+1,2*k+1) * (2*x+4)^k.
Recurrence equation: P(n+1,x)*P(n-2,x) - P(n,x)*P(n-1,x) = x.
Row sums A005246(n+2).
Showing 1-4 of 4 results.