cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211981 Numbers n such that floor(2^A006666(n)/3^A006667(n)) = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 10, 16, 21, 32, 42, 64, 75, 85, 113, 128, 151, 170, 227, 256, 341, 512, 682, 1024, 1365, 2048, 2730, 4096, 5461, 7281, 8192, 10922, 14563, 16384, 21845, 32768, 43690, 65536, 87381, 131072, 174762, 262144, 349525, 466033, 524288, 699050, 932067
Offset: 1

Views

Author

Michel Lagneau, Feb 13 2013

Keywords

Comments

A006666 and A006667 give the number of halving and tripling steps to reach 1 in 3x+1 problem.
Properties of this sequence:
A006667(a(n)) <= 3, and if a(n) is even then a(n)/2 is in the sequence.
The sequence A000079(n) (power of 2) is included in this sequence.
{a(n)} = E1 union E2 where E1 = {A000079(n)} union {5, 10, 21, 85, 170, 227, 341, 682, 1365, 2730, 5461, ...} and E2 = {75, 113, 151, 7281, ...}. If an element k of E1 generates the Collatz sequence of iterates k -> T_1(k) -> T_2(k) -> T_3(k) -> ... then any T_i(k) is an element of E1 of the form [2^a /3^b] where a = A006666(n), or A006666(n)-1, or ... and b = A006667(n), or A006667(n)-1, or ... But if k is an element of E2, there exists at least an element T_i(k) that is not in the sequence a(n). For example 75 -> 226 ->113 -> 340 -> ... and 226 is not in the sequence because, if [x] = [2^a /3^b] = [ x. x0 x1 x2 ...], the rational number 0.x0 x1 x2 ... > 0.666666.... => [2^a /3^(b-1)] of the form [(3x+2).y0 y1 y2 ...], and this integer is different from T_(i+1)(k) = [(3x+1).y0 y1 y2 ...] = 3x+1.
Example: T_2(75) = floor(2^10 /3^2) = 113 => floor(2^10/3^1) = 341 instead T_3(75) = 340.

Examples

			227 is in the sequence because A006666(227) = 11, A006667(227) = 2 => floor(2^11/3^2) = 227.
The Collatz trajectory of 227 is 227 -> 682 -> 341 -> 1024 -> 512 -> ... -> 2 -> 1, and 227 is in the subset E1 implies the following Collatz iterates:
227 = floor(2^11/3^2);
682 = floor(2^11/3^1);
341 = floor(2^10/3^1);
1024 = floor(2^10/3^0);
512 = floor(2^9/3^0);
256 = floor(2^8/3^0);
128 = floor(2^7/3^0);
...
2 = floor(2^1/3^0);
1 = floor(2^0/3^0);
With the numbers of E1, we obtain another formulation of the Collatz problem.
		

Crossrefs

Programs

  • Maple
    A:= proc(n) if type(n, 'even') then n/2; else 3*n+1 ; end if; end proc:
    B:= proc(n) a := 0 ; x := n ; while x > 1 do x := A(x) ; a := a+1 ; end do; a ; end proc:
    C:= proc(n) a := 0 ; x := n ; while x > 1 do if type(x, 'even') then x := x/2 ; else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc:
    D:= proc(n) C(n) ; end proc:
    A006666:= proc(n) B(n)- C(n) ; end:
    A006667:= proc(n) C(n)- D(n) ; end:
    G:= proc(n) floor(2^ A006666 (n)/3^ A006667 (n)) ; end:
    for i from 1 to 1000000 do: if G(i) =i then printf(`%d, `,i):else fi:od:
  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 30; t = {}; n = 0; While[Length[t] < nn, n++; c = Collatz[n]; ev = Length[Select[c, EvenQ]]; od = Length[c] - ev - 1; If[Floor[2^ev/3^od] == n, AppendTo[t, n]]]; t (* T. D. Noe, Feb 13 2013 *)