cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212069 Number of (w,x,y,z) with all terms in {1,...,n} and 3*w = x+y+z.

Original entry on oeis.org

0, 1, 2, 9, 22, 41, 72, 115, 170, 243, 334, 443, 576, 733, 914, 1125, 1366, 1637, 1944, 2287, 2666, 3087, 3550, 4055, 4608, 5209, 5858, 6561, 7318, 8129, 9000, 9931, 10922, 11979, 13102, 14291, 15552, 16885, 18290, 19773, 21334, 22973
Offset: 0

Views

Author

Clark Kimberling, May 01 2012

Keywords

Comments

w is the average of {x,y,z}, as well as {w,x,y,z}.
For a guide to related sequences, see A211795.
a(n) is also the number of (w,x,y,z) with all terms in {0,1,...,n-1} and 3*w = x+y+z. - Clark Kimberling, May 16 2012

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[3 w == x + y + z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212087 *)
    FindLinearRecurrence[%]
    (* Peter J. C. Moses, Apr 13 2012 *)
    LinearRecurrence[{3, -3, 2, -3, 3, -1},{0, 1, 2, 9, 22, 41},42] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
From R. J. Mathar, Jun 25 2012: (Start)
G.f.: x*(1 - x + 6*x^2 - x^3 + x^4)/((1 + x + x^2)*(1 - x)^4).
a(n) = (n^3 + 2*A049347(n-1))/3. (End)
E.g.f.: (3*exp(x)*x*(1 + 3*x + x^2) + 4*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Aug 06 2025