cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212088 Number of (w,x,y,z) with all terms in {1,...,n} and w

Original entry on oeis.org

0, 0, 7, 36, 117, 292, 612, 1143, 1963, 3159, 4833, 7099, 10080, 13914, 18751, 24750, 32085, 40942, 51516, 64017, 78667, 95697, 115353, 137893, 163584, 192708, 225559, 262440, 303669, 349576, 400500, 456795, 518827, 586971, 661617
Offset: 0

Views

Author

Clark Kimberling, May 01 2012

Keywords

Comments

Also, number of (w,x,y,z) with all terms in {1,...,n} and w>average{x,y,z}.
a(n) + A212089(n) = n^4.
For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[3 w < x + y + z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212088 *)
    FindLinearRecurrence[%]
    (* Peter J. C. Moses, Apr 13 2012 *)
    LinearRecurrence[{4, -6, 5, -5, 6, -4, 1},{0, 0, 7, 36, 117, 292, 612},35] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = 4*a(n-1)-6*a(n-2)+5*a(n-3)-5*a(n-4)+6*a(n-5)-4*a(n-6)+a(n-7).
G.f.: x^2*(x^4+5*x^3+15*x^2+8*x+7) / ((x^2+x+1)*(1-x)^5). - Alois P. Heinz, May 18 2012