cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212151 Number of 2 X 2 matrices M of positive integers such that permanent(M) < n.

Original entry on oeis.org

0, 0, 0, 1, 5, 13, 27, 47, 75, 112, 156, 214, 278, 358, 444, 552, 660, 796, 930, 1099, 1259, 1457, 1649, 1885, 2101, 2377, 2623, 2933, 3221, 3569, 3879, 4279, 4623, 5056, 5452, 5926, 6334, 6878, 7328, 7892, 8404, 9018, 9540, 10228, 10788, 11504, 12142, 12898
Offset: 0

Views

Author

Clark Kimberling, May 07 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    g:= z*(1-z)^(-1)*add(z^i/(1-z^i),i=1..N-2)^2:
    S:=series(g,z,N+1):
    seq(coeff(S,z,n),n=0..N); # Robert Israel, Nov 16 2017
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w*x + y*z < n, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]  (* A212151 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
  • Python
    from sympy import divisor_count
    def A212151(n): return  sum((sum(divisor_count(i+1)*divisor_count(j-i) for i in range(j>>1))<<1)+(divisor_count(j+1>>1)**2 if j&1 else 0) for j in range(1,n-1)) # Chai Wah Wu, Jul 26 2024

Formula

a(n) + A212240(n) = n^4.
a(n) = Sum_{k=1..n-1} Sum_{i=1..n-1} d(k) * floor((n-k-1)/i), where d(k) is the number of divisors of k (A000005). - Wesley Ivan Hurt, Nov 16 2017
G.f.: (x/(1-x))*(Sum_{i>=1} x^i/(1-x^i))^2. - Robert Israel, Nov 16 2017
from Ridouane Oudra, Oct 10 2023: (Start)
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} tau(i*j)*floor((n-1)/(i+j)) ;
a(n) = Sum_{i=1..n-1} Sum_{j=1..i-1} tau(j)*tau(i-j) ;
a(n+2) = Sum_{i=1..n} A055507(i). (End)