cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055507 a(n) = Sum_{k=1..n} d(k)*d(n+1-k), where d(k) is number of positive divisors of k.

Original entry on oeis.org

1, 4, 8, 14, 20, 28, 37, 44, 58, 64, 80, 86, 108, 108, 136, 134, 169, 160, 198, 192, 236, 216, 276, 246, 310, 288, 348, 310, 400, 344, 433, 396, 474, 408, 544, 450, 564, 512, 614, 522, 688, 560, 716, 638, 756, 636, 860, 676, 859, 772, 926, 758, 1016, 804, 1032
Offset: 1

Views

Author

Leroy Quet, Jun 29 2000

Keywords

Comments

a(n) is the number of ordered ways to express n+1 as a*b+c*d with 1 <= a,b,c,d <= n. - David W. Wilson, Jun 16 2003
tau(n) (A000005) convolved with itself, treating this result as a sequence whose offset is 2. - Graeme McRae, Jun 06 2006
Convolution of A341062 and nonzero terms of A006218. - Omar E. Pol, Feb 16 2021

Examples

			a(4) = d(1)*d(4) + d(2)*d(3) + d(3)*d(2) + d(4)*d(1) = 1*3 +2*2 +2*2 +3*1 = 14.
3 = 1*1+2*1 in 4 ways, so a(2)=4; 4 = 1*1+1*3 (4 ways) = 2*1+2*1 (4 ways), so a(3)=8; 5 = 4*1+1*1 (4 ways) = 2*2+1*1 (2 ways) + 3*1+2*1 (8 ways), so a(4) = 14. - _N. J. A. Sloane_, Jul 07 2012
		

Crossrefs

Programs

  • Maple
    with(numtheory); A055507:=n->add(tau(j)*tau(n+1-j),j=1..n);
  • Mathematica
    Table[Sum[DivisorSigma[0, k]*DivisorSigma[0, n + 1 - k], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 08 2022 *)
  • PARI
    a(n)=sum(k=1,n,numdiv(k)*numdiv(n+1-k)) \\ Charles R Greathouse IV, Oct 17 2012
    
  • Python
    from sympy import divisor_count
    def A055507(n): return  (sum(divisor_count(i+1)*divisor_count(n-i) for i in range(n>>1))<<1)+(divisor_count(n+1>>1)**2 if n&1 else 0) # Chai Wah Wu, Jul 26 2024

Formula

G.f.: Sum_{i >= 1, j >= 1} x^(i+j-1)/(1-x^i)/(1-x^j). - Vladeta Jovovic, Nov 11 2001
Working with an offset of 2, it appears that the o.g.f is equal to the Lambert series sum {n >= 2} A072031(n-1)*x^n/(1 - x^n). - Peter Bala, Dec 09 2014
a(n) = A212151(n+2) - A212151(n+1). - Ridouane Oudra, Sep 12 2020

Extensions

More terms from James Sellers, Jul 04 2000
Definition clarified by N. J. A. Sloane, Jul 07 2012

A212240 Number of 2 X 2 matrices M with all terms in {1,...,n} and permanent(M) >= n.

Original entry on oeis.org

0, 1, 16, 80, 251, 612, 1269, 2354, 4021, 6449, 9844, 14427, 20458, 28203, 37972, 50073, 64876, 82725, 104046, 129222, 158741, 193024, 232607, 277956, 329675, 388248, 454353, 528508, 611435, 703712, 806121, 919242, 1043953, 1180865
Offset: 0

Views

Author

Clark Kimberling, May 07 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w*x + y*z >= n, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]  (* A212240 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
  • Python
    from sympy import divisor_count
    def A212240(n): return  n**4-sum((sum(divisor_count(i+1)*divisor_count(j-i) for i in range(j>>1))<<1)+(divisor_count(j+1>>1)**2 if j&1 else 0) for j in range(1,n-1)) # Chai Wah Wu, Jul 26 2024

Formula

a(n) + A212151(n) = n^4.

Extensions

Offset changed to 0 by Georg Fischer, Feb 03 2022

A212241 Number of 2 X 2 matrices M with terms in {1,...,n} such that permanent(M) > n.

Original entry on oeis.org

0, 1, 15, 76, 243, 598, 1249, 2326, 3984, 6405, 9786, 14363, 20378, 28117, 37864, 49965, 64740, 82591, 103877, 129062, 158543, 192832, 232371, 277740, 329399, 388002, 454043, 528220, 611087, 703402, 805721, 918898, 1043520, 1180469
Offset: 0

Views

Author

Clark Kimberling, May 08 2012

Keywords

Comments

a(n) + A212151(n+1) = n^4. For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w*x + y*z > n, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]  (* A212241 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
Showing 1-3 of 3 results.