A212161 Numbers congruent to 6 or 10 mod 17.
6, 10, 23, 27, 40, 44, 57, 61, 74, 78, 91, 95, 108, 112, 125, 129, 142, 146, 159, 163, 176, 180, 193, 197, 210, 214, 227, 231, 244, 248, 261, 265, 278, 282, 295, 299, 312, 316, 329, 333, 346, 350
Offset: 0
Examples
Divisibility of A001844 by 17: n=0: A001844(6) = 85 = 5*17 == 0 (mod 17). n=2: A001844(23) = 1105 = 5*13*17 == 0 (mod 17). However, 8^2 + 9^2 = 145 == 9 (mod 17) is not divisible by 17 because 8 is not a term of the present sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[1/4*(34*n+9*(-1)^n+15): n in [0..60]]; // Vincenzo Librandi, May 24 2012
-
Mathematica
Table[1/4*(34*n+9*(-1)^n+15),{n,0,60}] (* Vincenzo Librandi, May 24 2012 *)
-
PARI
a(n) = (34*n + 9*(-1)^n + 15)/4 \\ David Lovler, Aug 09 2022
Formula
Bisection: a(2*n) = 17*n + 6, a(2*n+1) = 17*n + 10, n >= 0.
O.g.f.: (6 + 4*x + 7*x^2)/((1-x)*(1-x^2)).
E.g.f.: ((34*x + 15)*exp(x) + 9*exp(-x))/4. - David Lovler, Aug 09 2022
Comments