A212194 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the staggered hexagonal square grid graph SH_(n,n), highest powers first.
1, 0, 1, -5, 8, -4, 0, 1, -16, 112, -448, 1120, -1791, 1786, -1012, 248, 0, 1, -33, 510, -4898, 32703, -160859, 602408, -1749715, 3975561, -7068408, 9755858, -10265148, 7968348, -4304712, 1445104, -226720, 0, 1, -56, 1508, -25992, 321994, -3051871, 23000726, -141421592, 722137763, -3101089710
Offset: 1
Examples
3 example graphs: o--o--o . | /|\ | . |/ | \| . o--o o--o--o . | /| | /|\ | . |/ | |/ | \| . o o--o o--o--o Graph: SH_(1,1) SH_(2,2) SH_(3,3) Vertices: 1 4 9 Edges: 0 5 16 The staggered hexagonal square grid graph SH_(2,2) has chromatic polynomial q^4 -5*q^3 +8*q^2 -4*q => row 2 = [1, -5, 8, -4, 0]. Triangle T(n,k) begins: 1, 0; 1, -5, 8, -4, 0; 1, -16, 112, -448, 1120, -1791, ... 1, -33, 510, -4898, 32703, -160859, ... 1, -56, 1508, -25992, 321994, -3051871, ... , -3101089710, ... 1, -85, 3520, -94620, 1855860, -28306676, ... 1, -120, 7068, -272344, 7720110, -171656543, ... 1, -161, 12782, -667058, 25738055, -783003395, ...
Links
- Alois P. Heinz, Rows n = 1..8, flattened
- Wikipedia, Chromatic Polynomial
Comments