A212208 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square diagonal grid graph DG_(n,n), highest powers first.
1, 0, 1, -6, 11, -6, 0, 1, -20, 174, -859, 2627, -5082, 6048, -4023, 1134, 0, 1, -42, 825, -10054, 85011, -528254, 2491825, -9084089, 25795983, -57031153, 97292827, -125639547, 118705077, -77301243, 30931875, -5709042, 0, 1, -72, 2492, -55183, 877812
Offset: 1
Examples
3 example graphs: o---o---o . |\ /|\ /| . | X | X | . |/ \|/ \| . o---o o---o---o . |\ /| |\ /|\ /| . | X | | X | X | . |/ \| |/ \|/ \| . o o---o o---o---o Graph: DG_(1,1) DG_(2,2) DG_(3,3) Vertices: 1 4 9 Edges: 0 6 20 The square diagonal grid graph DG_(2,2) equals the complete graph K_4 and has chromatic polynomial q*(q-1)*(q-2)*(q-3) = q^4 -6*q^3 +11*q^2 -6*q => row 2 = [1, -6, 11, -6, 0]. Triangle T(n,k) begins: 1, 0; 1, -6, 11, -6, 0; 1, -20, 174, -859, 2627, -5082, ... 1, -42, 825, -10054, 85011, -528254, ... 1, -72, 2492, -55183, 877812, -10676360, ... 1, -110, 5895, -205054, 5203946, -102687204, ... 1, -156, 11946, -598491, 22059705, -637802510, ...
Links
- Alois P. Heinz, Rows n = 1..7, flattened
- Wikipedia, Chromatic Polynomial
Comments