A212266 Primes p such that p - m! is composite, where m is the greatest number such that m! < p.
59, 73, 79, 89, 101, 109, 197, 211, 239, 241, 263, 281, 307, 337, 367, 373, 379, 409, 419, 421, 439, 443, 449, 461, 463, 491, 523, 547, 557, 571, 593, 601, 613, 617, 631, 647, 653, 659, 673, 701, 709, 769, 797, 811, 839, 853, 863, 881, 907, 929, 937, 941, 967
Offset: 1
Examples
29 is not a member because 29 - 4! = 5 is prime. 59 is a member because 59 - 4! = 35 is composite.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[200]],Module[{m=9},CompositeQ[While[m!>=#,m--];#-m!]]&] (* The initial m constant (set at 9 in the program) needs to be increased if the prime Range constant (set at 200 in the program) is increased beyond 30969. *) (* Harvey P. Dale, Dec 01 2023 *)
-
PARI
for(n=3,5,N=n!;forprime(p=N+3,N*(n+1),if(!isprime(p-N), print1(p", ")))) \\ Charles R Greathouse IV, May 12 2012
-
PARI
is_A212266(p)=isprime(p) && for(n=1,p, n!
1)) \\ M. F. Hasler, May 20 2012
Comments