cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212267 Array A(i,j) read by antidiagonals: A(i,j) is the (2*i-1)-th derivative of tan(tan(tan(...tan(x)))) nested j times evaluated at 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 1, 6, 72, 272, 1, 8, 168, 2896, 7936, 1, 10, 304, 10672, 203904, 353792, 1, 12, 480, 26400, 1198080, 22112000, 22368256, 1, 14, 696, 52880, 4071040, 208521728, 3412366336, 1903757312, 1, 16, 952, 92912, 10373760, 976629760, 51874413568, 709998153728, 209865342976
Offset: 1

Views

Author

John M. Campbell, May 12 2012

Keywords

Comments

The determinant of the n X n such matrix has a closed form given in the Mathematica code below.
Rows appear to be given by polynomials (see formula section).

Examples

			Array A(i,j) begins:
.      1,        1,         1,         1,          1, ...
.      2,        4,         6,         8,         10, ...
.     16,       72,       168,       304,        480, ...
.    272,     2896,     10672,     26400,      52880, ...
.   7936,   203904,   1198080,   4071040,   10373760, ...
. 353792, 22112000, 208521728, 976629760, 3172514560, ...
Evaluate the (2*3-1)th derivate of tan(tan(tan(x))) at 0, which is 168. Thus A(3,3)=168.
		

Crossrefs

Columns j=1-3 give: A000182, A003718, A003720.

Programs

  • Maple
    A:= (i, j)-> (D@@(2*i-1))(tan@@j)(0):
    seq(seq(A(i, 1+d-i), i=1..d), d=1..8); # Alois P. Heinz, May 13 2012
  • Mathematica
    A[a_, b_] :=
      A[a, b] =
       Array[D[Nest[Tan, x, #2], {x, 2*#1 - 1}] /. x -> 0 &, {a, b}];
    Print[A[7, 7] // MatrixForm];
    Table2 = {};
    k = 1;
    While[k < 8, Table1 = {};
      i = 1;
      j = k;
      While[0 < j,
       AppendTo[Table1, First[Take[First[Take[A[7, 7], {i, i}]], {j, j}]]];
       j = j - 1;
       i = i + 1];
      AppendTo[Table2, Table1];
      k++];
    Print[Flatten[Table2]];
    Print[Table[Det[A[n, n]], {n, 1, 7}]];
    Table[(2^(11/12 +
           1/2 (5 + 3 (-1 + n)) (-1 + n)) 3^(-(1/2) (-1 +
             n) n) Glaisher^3 \[Pi]^-n BarnesG[1/2 + n] BarnesG[1 + n] BarnesG[3/2 + n])/E^(1/4), {n, 1, 7}]

Formula

A(i,j) = ((d/dx)^(2i-1) tan^j(x))_{x=0}.
Third row: n*(5*n - 1)*4 = 8*A005476(n).
Fourth row: 8/3*n*(11 - 84*n + 175*n^2).

Extensions

More terms from Alois P. Heinz, May 13 2012