A212267 Array A(i,j) read by antidiagonals: A(i,j) is the (2*i-1)-th derivative of tan(tan(tan(...tan(x)))) nested j times evaluated at 0.
1, 1, 2, 1, 4, 16, 1, 6, 72, 272, 1, 8, 168, 2896, 7936, 1, 10, 304, 10672, 203904, 353792, 1, 12, 480, 26400, 1198080, 22112000, 22368256, 1, 14, 696, 52880, 4071040, 208521728, 3412366336, 1903757312, 1, 16, 952, 92912, 10373760, 976629760, 51874413568, 709998153728, 209865342976
Offset: 1
Examples
Array A(i,j) begins: . 1, 1, 1, 1, 1, ... . 2, 4, 6, 8, 10, ... . 16, 72, 168, 304, 480, ... . 272, 2896, 10672, 26400, 52880, ... . 7936, 203904, 1198080, 4071040, 10373760, ... . 353792, 22112000, 208521728, 976629760, 3172514560, ... Evaluate the (2*3-1)th derivate of tan(tan(tan(x))) at 0, which is 168. Thus A(3,3)=168.
Links
- Eric Weisstein's World of Mathematics, Nested Function
Programs
-
Maple
A:= (i, j)-> (D@@(2*i-1))(tan@@j)(0): seq(seq(A(i, 1+d-i), i=1..d), d=1..8); # Alois P. Heinz, May 13 2012
-
Mathematica
A[a_, b_] := A[a, b] = Array[D[Nest[Tan, x, #2], {x, 2*#1 - 1}] /. x -> 0 &, {a, b}]; Print[A[7, 7] // MatrixForm]; Table2 = {}; k = 1; While[k < 8, Table1 = {}; i = 1; j = k; While[0 < j, AppendTo[Table1, First[Take[First[Take[A[7, 7], {i, i}]], {j, j}]]]; j = j - 1; i = i + 1]; AppendTo[Table2, Table1]; k++]; Print[Flatten[Table2]]; Print[Table[Det[A[n, n]], {n, 1, 7}]]; Table[(2^(11/12 + 1/2 (5 + 3 (-1 + n)) (-1 + n)) 3^(-(1/2) (-1 + n) n) Glaisher^3 \[Pi]^-n BarnesG[1/2 + n] BarnesG[1 + n] BarnesG[3/2 + n])/E^(1/4), {n, 1, 7}]
Formula
A(i,j) = ((d/dx)^(2i-1) tan^j(x))_{x=0}.
Third row: n*(5*n - 1)*4 = 8*A005476(n).
Fourth row: 8/3*n*(11 - 84*n + 175*n^2).
Extensions
More terms from Alois P. Heinz, May 13 2012
Comments