A212278 Number of adjacent pairs of zeros (possibly overlapping) in the representation of n in base of Fibonacci numbers (A014417).
0, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 1, 0, 4, 3, 2, 2, 1, 2, 1, 0, 5, 4, 3, 3, 2, 3, 2, 1, 3, 2, 1, 1, 0, 6, 5, 4, 4, 3, 4, 3, 2, 4, 3, 2, 2, 1, 4, 3, 2, 2, 1, 2, 1, 0, 7, 6, 5, 5, 4, 5, 4, 3, 5, 4, 3, 3, 2, 5, 4, 3, 3, 2, 3, 2, 1, 5, 4, 3, 3, 2, 3, 2, 1, 3, 2, 1, 1, 0, 8
Offset: 0
Examples
A014417(5) = 1000, two pairs of adjacent zeros, so a(5) = 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10946
Programs
-
Maple
F:= combinat[fibonacci]: b:= proc(n) option remember; local j; if n=0 then 0 else for j from 2 while F(j+1)<=n do od; b(n-F(j))+2^(j-2) fi end: a:= proc(n) local c, h, m, t; c, t, m:= 0, 1, b(n); while m>0 do h:= irem(m, 2, 'm'); if h=t and h=0 then c:=c+1 fi; t:=h od; c end: seq(a(n), n=0..150); # Alois P. Heinz, May 18 2012
Comments