cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A212296 a(n) = numerator(1 + Sum_{k=1..n} n^2 / Product_{j=1..k} 4*j^2).

Original entry on oeis.org

5, 33, 869, 48449, 1504375, 124787549, 119224713221, 10003972882859, 9610660732622149, 3811875515172994001, 40741092389313992153, 1050927826884051298685761, 707754011714996709527574437, 184405400463251288725766546203, 496687160874729261988243149308101
Offset: 1

Views

Author

Keywords

Examples

			r(n) = 5/4, 33/16, 869/256, 48449/9216, 1504375/196608, 124787549/11796480, ....
From _Petros Hadjicostas_, Sep 26 2019: (Start)
a(3) = numerator(1 + 3^2/(4*1^2) + 3^2/(4*1^2 * 4*2^2) + 3^2/(4*1^2 * 4*2^2 * 4*3^2)) = numerator(1 + 9/4 + 9/64 + 9/2304) = numerator(869/256) = 869.
a(4) = numerator(1 + 4^2/(4*1^2) + 4^2/(4*1^2 * 4*2^2) + 4^2/(4*1^2 * 4*2^2 * 4*3^2) + 4^2/(4*1^2 * 4*2^2 * 4*3^2 * 4*4^2)) = numerator(1 + 16/4 + 16/64 + 16/2304 + 16/147456) = denominator(48449/9216) = 48449.
(End)
		

Crossrefs

Denominators are A212297.

Programs

  • Maple
    a := n -> numer(1 + add(n^2 / mul(4*j^2, j=1..k), k=1..n)):
    seq(a(n), n=1..15); # Peter Luschny, Sep 26 2019
  • Mathematica
    G[n_] := Module[{N=1, D=1}, Sum[N*=2*k-1; D*=2*k; (n/D)^2, {k, 1, n}] + 1]; a[n_] := Numerator[G[n]]; Array[a, 15] (* Jean-François Alcover, Sep 05 2015, translated from PARI *)
  • PARI
    G(n)=my(N=1,D=1); sum(k=1,n, N*=2*k-1; D*=2*k; (n/D)^2)+1
    a(n)=numerator(G(n))
    vector(15, n, a(n))

Extensions

Redefinition according to the data by Peter Luschny, Sep 26 2019

A213397 Number of (w,x,y) with all terms in {0,...,n} and 2*w >= |x+y-z|.

Original entry on oeis.org

1, 5, 18, 43, 83, 144, 229, 341, 486, 667, 887, 1152, 1465, 1829, 2250, 2731, 3275, 3888, 4573, 5333, 6174, 7099, 8111, 9216, 10417, 11717, 13122, 14635, 16259, 18000, 19861, 21845, 23958, 26203, 28583, 31104, 33769, 36581, 39546, 42667, 45947, 49392, 53005, 56789, 60750
Offset: 0

Views

Author

Clark Kimberling, Jun 12 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[2 w >= Abs[x + y - w], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212297 *)
    CoefficientList[Series[(1 + 2 x + 6 x^2 + 2 x^3 + x^4)/((1 - x)^4*(1 + x + x^2)), {x, 0, 44}], x] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    first(n) = Vec((1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^4*(1 + x + x^2)) + O(x^n)) \\ Iain Fox, Dec 22 2017

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
G.f.: (1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^4*(1 + x + x^2)).
a(n) = (n+1)^3 - A213396(n).
a(n) = floor(2*n^3/3) + 2*n*(n + 1) + 1. - Bruno Berselli, Dec 22 2017
Showing 1-2 of 2 results.