A212331 a(n) = 5*n*(n+5)/2.
0, 15, 35, 60, 90, 125, 165, 210, 260, 315, 375, 440, 510, 585, 665, 750, 840, 935, 1035, 1140, 1250, 1365, 1485, 1610, 1740, 1875, 2015, 2160, 2310, 2465, 2625, 2790, 2960, 3135, 3315, 3500, 3690, 3885, 4085, 4290, 4500, 4715, 4935, 5160, 5390, 5625, 5865
Offset: 0
Examples
From the first and second comment derives the following table: ---------------------------------------------------------------- h \ n | 0 1 2 3 4 5 6 7 8 9 10 ------|--------------------------------------------------------- 0 | 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... (A000217) 1 | 0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, ... (A005563) 2 | 0, 6, 15, 27, 42, 60, 81, 105, 132, 162, 195, ... (A140091) 3 | 0, 10, 24, 42, 64, 90, 120, 154, 192, 234, 280, ... (A067728) 4 | 0, 15, 35, 60, 90, 125, 165, 210, 260, 315, 375, ... (A212331) 5 | 0, 21, 48, 81, 120, 165, 216, 273, 336, 405, 480, ... (A140681) 6 | 0, 28, 63, 105, 154, 210, 273, 343, 420, 504, 595, ... 7 | 0, 36, 80, 132, 192, 260, 336, 420, 512, 612, 720, ... 8 | 0, 45, 99, 162, 234, 315, 405, 504, 612, 729, 855, ... 9 | 0, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, ... with the formula n*(h+1)*(h+n+1)/2. See also A098737.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[5*n*(n+5)/2: n in [0..46]];
-
Mathematica
Table[(5/2) n (n + 5), {n, 0, 46}]
-
PARI
a(n)=5*n*(n+5)/2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: 5*x*(3-2*x)/(1-x)^3.
a(n) = a(-n-5) = 5*A055998(n).
E.g.f.: (5/2)*x*(x + 6)*exp(x). - G. C. Greubel, Jul 21 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/25 - 47/750. - Amiram Eldar, Feb 26 2022
Extensions
Extended by Bruno Berselli, Aug 05 2015
Comments