A212356 Number of terms of the cycle index polynomial Z(D_n) for the dihedral group D_n.
1, 2, 3, 4, 3, 5, 3, 5, 4, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 7, 5, 5, 3, 9, 4, 5, 5, 7, 3, 9, 3, 7, 5, 5, 5, 10, 3, 5, 5, 9, 3, 9, 3, 7, 7, 5, 3, 11, 4, 7, 5, 7, 3, 9, 5, 9, 5, 5, 3, 13, 3, 5, 7, 8, 5, 9, 3, 7, 5, 9, 3, 13, 3, 5, 7, 7, 5, 9, 3, 11, 6, 5, 3, 13, 5, 5, 5, 9, 3, 13
Offset: 1
Examples
a(6) = 5, because tau(6) = 4. The row no. 6 of A212355 is [2,0,0,2,0,0,4,0,3,0,1] with 5 non-vanishing entries. Illustration of a(7)=3 = number of different sets of distances of 7 points among {z=e^(i k pi/7), k=0..13}: Inequivalent configurations are, e.g.: [k]=[0,2,4,6,8,10,12] with distances {0.86777, 1.5637, 1.9499}, [k]=[0,1,2,3,4,5,6] with distances {0.44504, 0.86777, 1.2470, 1.5637, 1.8019, 1.9499}, and [k]=[0,1,2,3,4,5,7] with distances {0.44504, 0.86777, 1.2470, 1.5637, 1.8019, 1.9499, 2.0000}. - _M. F. Hasler_, Jan 28 2013
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1001
Programs
-
PARI
A212356(n) = if(n<=2,n,1+numdiv(n)); \\ Antti Karttunen, Sep 22 2017
Comments